93 resultados para Helmholtz Equation
Resumo:
Centred at the interface between the sea-breeze and the return flow aloft, Kelvin-Helmholtz billows (KHB) are an important feature of the turbulent structure of some sea-breeze circulations (SBCs). In other SBCs, there are no prominent KHBs observed. Factors governing the appearance of billows are determined from a database of 139 sea breezes, constructed from two years of summertime surface observations at a site on the south coast of England. Post-frontal oscillations occur in the surface data for some SBCs and are interpreted as indicating possible KHBs aloft. The SBCs are formed under a wide range of synoptic conditions, enabling various measures of possible billow occurrence to be related to properties of the large-scale, ambient flow. Consistent with laboratory experiments of density currents, KHBs are suppressed for propagation into a head wind and enhanced with a tail wind. They are also found to be enhanced for stronger ambient wind speeds, while large-scale coast-parallel flow is effective in suppressing the billows.
Resumo:
We consider the small-time behavior of interfaces of zero contact angle solutions to the thin-film equation. For a certain class of initial data, through asymptotic analyses, we deduce a wide variety of behavior for the free boundary point. These are supported by extensive numerical simulations. © 2007 Society for Industrial and Applied Mathematics
Resumo:
In this paper we consider the 2D Dirichlet boundary value problem for Laplace’s equation in a non-locally perturbed half-plane, with data in the space of bounded and continuous functions. We show uniqueness of solution, using standard Phragmen-Lindelof arguments. The main result is to propose a boundary integral equation formulation, to prove equivalence with the boundary value problem, and to show that the integral equation is well posed by applying a recent partial generalisation of the Fredholm alternative in Arens et al [J. Int. Equ. Appl. 15 (2003) pp. 1-35]. This then leads to an existence proof for the boundary value problem. Keywords. Boundary integral equation method, Water waves, Laplace’s
Resumo:
There exist two central measures of turbulent mixing in turbulent stratified fluids that are both caused by molecular diffusion: 1) the dissipation rate D(APE) of available potential energy APE; 2) the turbulent rate of change Wr, turbulent of background gravitational potential energy GPEr. So far, these two quantities have often been regarded as the same energy conversion, namely the irreversible conversion of APE into GPEr, owing to the well known exact equality D(APE)=Wr, turbulent for a Boussinesq fluid with a linear equation of state. Recently, however, Tailleux (2009) pointed out that the above equality no longer holds for a thermally-stratified compressible, with the ratio ξ=Wr, turbulent/D(APE) being generally lower than unity and sometimes even negative for water or seawater, and argued that D(APE) and Wr, turbulent actually represent two distinct types of energy conversion, respectively the dissipation of APE into one particular subcomponent of internal energy called the "dead" internal energy IE0, and the conversion between GPEr and a different subcomponent of internal energy called "exergy" IEexergy. In this paper, the behaviour of the ratio ξ is examined for different stratifications having all the same buoyancy frequency N vertical profile, but different vertical profiles of the parameter Υ=α P/(ρCp), where α is the thermal expansion coefficient, P the hydrostatic pressure, ρ the density, and Cp the specific heat capacity at constant pressure, the equation of state being that for seawater for different particular constant values of salinity. It is found that ξ and Wr, turbulent depend critically on the sign and magnitude of dΥ/dz, in contrast with D(APE), which appears largely unaffected by the latter. These results have important consequences for how the mixing efficiency should be defined and measured in practice, which are discussed.
Resumo:
In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.
Resumo:
We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ?.( b(u)? 2u), where generically b(u) := |u|? for any given ? ? (0,?). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ? 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some numerical experiments in one and two space dimensions are presented.
Resumo:
We use the point-source method (PSM) to reconstruct a scattered field from its associated far field pattern. The reconstruction scheme is described and numerical results are presented for three-dimensional acoustic and electromagnetic scattering problems. We give new proofs of the algorithms, based on the Green and Stratton-Chu formulae, which are more general than with the former use of the reciprocity relation. This allows us to handle the case of limited aperture data and arbitrary incident fields. Both for 3D acoustics and electromagnetics, numerical reconstructions of the field for different settings and with noisy data are shown. For shape reconstruction in acoustics, we develop an appropriate strategy to identify areas with good reconstruction quality and combine different such regions into one joint function. Then, we show how shapes of unknown sound-soft scatterers are found as level curves of the total reconstructed field.