50 resultados para Heart Butte Dam.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: The PPARGC1A gene coactivates multiple nuclear transcription factors involved in cellular energy metabolism and vascular stasis. In the present study, we genotyped 35 tagging polymorphisms to capture all common PPARGC1A nucleotide sequence variations and tested for association with metabolic and cardiovascular traits in 2,101 Danish and Estonian boys and girls from the European Youth Heart Study, a multicentre school-based cross-sectional cohort study. METHODS: Fasting plasma glucose concentrations, anthropometric variables and blood pressure were measured. Habitual physical activity and aerobic fitness were objectively assessed using uniaxial accelerometry and a maximal aerobic exercise stress test on a bicycle ergometer, respectively. RESULTS: In adjusted models, nominally significant associations were observed for BMI (rs10018239, p = 0.039), waist circumference (rs7656250, p = 0.012; rs8192678 [Gly482Ser], p = 0.015; rs3755863, p = 0.02; rs10018239, beta = -0.01 cm per minor allele copy, p = 0.043), systolic blood pressure (rs2970869, p = 0.018) and fasting glucose concentrations (rs11724368, p = 0.045). Stronger associations were observed for aerobic fitness (rs7656250, p = 0.005; rs13117172, p = 0.008) and fasting glucose concentrations (rs7657071, p = 0.002). None remained significant after correcting for the number of statistical comparisons. We proceeded by testing for gene x physical activity interactions for the polymorphisms that showed nominal evidence of association in the main effect models. None of these tests was statistically significant. CONCLUSIONS/INTERPRETATION: Variants at PPARGC1A may influence several metabolic traits in this European paediatric cohort. However, variation at PPARGC1A is unlikely to have a major impact on cardiovascular or metabolic health in these children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background—Probiotics are extensively used to promote gastrointestinal health and emerging evidence suggests that their beneficial properties can extend beyond the local environment of the gut. Here, we determined whether oral probiotic administration can alter the progression of post-infarction heart failure. Methods and Results—Rats were subjected to six weeks of sustained coronary artery occlusion and administered the probiotic Lactobacillus rhamnosus GR-1 or placebo in the drinking water ad libitum. Culture and 16s rRNA sequencing showed no evidence of GR-1 colonization or a significant shift in the composition of the cecal microbiome. However, animals administered GR-1 exhibited a significant attenuation of left ventricular hypertrophy based on tissue weight assessment as well as gene expression of atrial natriuretic peptide. Moreover, these animals demonstrated improved hemodynamic parameters reflecting both improved systolic and diastolic left ventricular function. Serial echocardiography revealed significantly improved left ventricular parameters throughout the six week follow-up period including a marked preservation of left ventricular ejection fraction as well as fractional shortening. Beneficial effects of GR-1 were still evident in those animals in which GR-1 was withdrawn at four weeks suggesting persistence of the GR-1 effects following cessation of therapy. Investigation of mechanisms showed a significant increase in the leptin to adiponectin plasma concentration ratio in rats subjected to coronary ligation which was abrogated by GR-1. Metabonomic analysis showed differences between sham control and coronary artery ligated hearts particularly with respect to preservation of myocardial taurine levels. Conclusions—The study suggests that probiotics offer promise as a potential therapy for the attenuation of heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The psychiatric and psychosocial evaluation of the heart transplant candidate can identify particular predictors for postoperative problems. These factors, as identified during the comprehensive evaluation phase, provide an assessment of the candidate in context of the proposed transplantation protocol. Previous issues with compliance, substance abuse, and psychosis are clear indictors of postoperative problems. The prolonged waiting list time provides an additional period to evaluate and provide support to patients having a terminal disease who need a heart transplant, and are undergoing prolonged hospitalization. Following transplantation, the patient is faced with additional challenges of a new self-image, multiple concerns, anxiety, and depression. Ultimately, the success of the heart transplantation remains dependent upon the recipient's ability to cope psychologically and comply with the medication regimen. The limited resource of donor hearts and the high emotional and financial cost of heart transplantation lead to an exhaustive effort to select those patients who will benefit from the improved physical health the heart transplant confers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background—A major problem in procurement of donor hearts is the limited time a donor heart remains viable. After cardiectomy, ischemic hypoxia is the main cause of donor heart degradation. The global myocardial ischemia causes a cascade of oxygen radical formation that cumulates in an elevation in hydrogen ions (decrease in pH), irreversible cellular injury, and potential microvascular changes in perfusion. Objective—To determine the changes of prolonged storage times on donor heart microvasculature and the effects of intermittent antegrade perfusion. Materials and Methods—Using porcine hearts flushed with a Ribosol-based cardioplegic solution, we examined how storage time affects microvascular myocardial perfusion by using contrast-enhanced magnetic resonance imaging at a mean (SD) of 6.1 (0.6) hours (n=13) or 15.6 (0.6) hours (n=11) after cardiectomy. Finally, to determine if administration of cardioplegic solution affects pH and microvascular perfusion, isolated hearts (group 1, n=9) given a single antegrade dose, were compared with hearts (group 2, n=8) given intermittent antegrade cardioplegia (150 mL, every 30 min, 150 mL/min) by a heart preservation device. Khuri pH probes in left and right ventricular tissue continuously measured hydrogen ion levels, and perfusion intensity on magnetic resonance images was plotted against time. Results—Myocardial perfusion measured via magnetic resonance imaging at 6.1 hours was significantly greater than at 15.6 hours (67% vs 30%, P= .00008). In group 1 hearts, the mean (SD) for pH at the end of 6 hours decreased to 6.2 (0.2). In group 2, hearts that received intermittent antegrade cardioplegia, pH at the end of 6 hours was higher at 6.7 (0.3) (P=.0005). Magnetic resonance imaging showed no significant differences between the 2 groups in contrast enhancement (group 1, 62%; group 2, 40%) or in the wet/dry weight ratio. Conclusion—Intermittent perfusion maintains a significantly higher myocardial pH than does a conventional single antegrade dose. This difference may translate into an improved quality of donor hearts procured for transplantation, allowing longer distance procurement, tissue matching, improved outcomes for transplant recipients, and ideally a decrease in transplant-related costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The UK new-build housing sector is facing dual pressures to expand supply, whilst delivering against tougher planning and Building Regulation requirements; predominantly in the areas of sustainability. The sector is currently responding by significantly scaling up production and incorporating new technical solutions into new homes. This trajectory of up-scaling and technical innovation has been of research interest; but this research has primarily focus on the ‘upstream’ implications for house builders’ business models and standardised design templates. There has been little attention, though, to the potential ‘downstream’ implications of the ramping up of supply and the introduction of new technologies for build quality and defects. This paper contributes to our understanding of the ‘downstream’ implications through a synthesis of the current UK defect literature with respect to new-build housing. It is found that the prevailing emphasis in the literature is limited to the responsibility, pathology and statistical analysis of defects (and failures). The literature does not extend to how house builders individually and collectively, in practice, collect and learn from defects information. The paper concludes by describing an ongoing collaborative research programme with the National House Building Council (NHBC) to: (a) understand house builders’ localised defects analysis procedures, and their current knowledge feedback loops to inform risk management strategies; and, (b) building on this understanding, design and test action research interventions to develop new data capture, learning processes and systems to reduce targeted defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK) was studied in freshly isolated adult rat heart preparations. In contrast to the situation in ventricular myocytes cultured from neonatal rat hearts, stimulation of MAPK activity by 1 mumol/L phorbol 12-myristate 13-acetate (PMA) was not consistently detectable in crude extracts. After fast protein liquid chromatography, MAPK isoforms p42MAPK and p44MAPK and two peaks of MEK were shown to be activated > 10-fold in perfused hearts or ventricular myocytes exposed to 1 mumol/L PMA for 5 minutes. The identities of MAPK or MEK were confirmed by immunoblotting and, for MAPK, by the "in-gel" myelin basic protein phosphorylation assay. In retrogradely perfused hearts, high coronary perfusion pressure (120 mm Hg for 5 minutes), norepinephrine (50 mumol/L for 5 minutes), or isoproterenol (50 mumol/L for 5 minutes) stimulated MAPK and MEK approximately 2- to 5-fold. In isolated myocytes, endothelin 1 (100 nmol/L for 5 minutes) also stimulated MAPK, but stimulation by norepinephrine or isoproterenol was difficult to detect. Immunoblotting showed that the relative abundances of MAPK and MEK protein in ventricles declined to < 20% of their postpartal abundances after 50 days. This may explain the difficulties encountered in assaying the activity of MAPK in crude extracts from adult hearts. We conclude that potentially hypertrophic agonists and interventions stimulate the MAPK cascade in adult rats and suggest that the MAPK cascade may be an important intracellular signaling pathway in this response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine and mitogen-activated protein kinases (MAPKs) have been separately implicated in cardiac ischaemic preconditioning. We investigated the activation of MAPK subfamilies by adenosine in perfused rat hearts. p38-MAPK was rapidly phosphorylated and activated (10-fold activation, maximal at 5 min) by 10 mM adenosine, as was the p38-MAPK substrate, MAPKAPK2 (4.5-fold). SAPKs/JNKs were activated (5-fold) and ERKs were phosphorylated (both maximal at 5 min). The concentration dependences of activation of p38-MAPK and ERKs were biphasic with a 'high affinity' component (maximal at 10-100 microM adenosine) and a 'low affinity' component that had not saturated at 10 mM. SAPKs/JNKs were activated only by 10 mM adenosine. These results are consistent with MAPK involvement in adenosine-mediated ischaemic preconditioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the ability of phenylephrine (PE), an alpha-adrenergic agonist and promoter of hypertrophic growth in the ventricular myocyte, to activate the three best-characterized mitogen-activated protein kinase (MAPK) subfamilies, namely p38-MAPKs, SAPKs/JNKs (i.e. stress-activated protein kinases/c-Jun N-terminal kinases) and ERKs (extracellularly responsive kinases), in perfused contracting rat hearts. Perfusion of hearts with 100 microM PE caused a rapid (maximal at 10 min) 12-fold activation of two p38-MAPK isoforms, as measured by subsequent phosphorylation of a p38-MAPK substrate, recombinant MAPK-activated protein kinase 2 (MAPKAPK2). This activation coincided with phosphorylation of p38-MAPK. Endogenous MAPKAPK2 was activated 4-5-fold in these perfusions and this was inhibited completely by the p38-MAPK inhibitor, SB203580 (10 microM). Activation of p38-MAPK and MAPKAPK2 was also detected in non-contracting hearts perfused with PE, indicating that the effects were not dependent on the positive inotropic/chronotropic properties of the agonist. Although SAPKs/JNKs were also rapidly activated, the activation (2-3-fold) was less than that of p38-MAPK. The ERKs were activated by perfusion with PE and the activation was at least 50% of that seen with 1 microM PMA, the most powerful activator of the ERKs yet identified in cardiac myocytes. These results indicate that, in addition to the ERKs, two MAPK subfamilies, whose activation is more usually associated with cellular stresses, are activated by the Gq/11-protein-coupled receptor (Gq/11PCR) agonist, PE, in whole hearts. These data indicate that Gq/11PCR agonists activate multiple MAPK signalling pathways in the heart, all of which may contribute to the overall response (e.g. the development of the hypertrophic phenotype).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using primary cultures of neonatal rat ventricular myocytes and isolated adult rat hearts as models, we have characterized extensively the regulation of MAPKs in the heart. The ERKs are activated primarily by GPCR agonists acting through PKC. These agonists can also activate the JNKs although the mechanism is unclear. Cellular stresses stimulate strong activation of the JNKs, but also cause some stimulation of ERKs. Activation of p38-MAPK has so far only been demonstrated in intact adult hearts subjected to stresses and probably leads to activation of MAPKAPK2. Both cellular stresses and GPCR agonists induce phosphorylation of c-Jun, but only the latter causes upregulation of c-Jun protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three well-characterized mitogen-activated protein kinase (MAPK) subfamilies are expressed in rodent and rabbit hearts, and are activated by pathophysiological stimuli. We have determined and compared the expression and activation of these MAPKs in donor and failing human hearts. The amount and activation of MAPKs was assessed in samples from the left ventricles of 4 unused donor hearts and 12 explanted hearts from patients with heart failure secondary to ischaemic heart disease. Total MAPKs or dually phosphorylated (activated) MAPKs were detected by Western blotting and MAPK activities were measured by in gel kinase assays. As in rat heart, c-Jun N-terminal kinases (JNKs) were detected in human hearts as bands corresponding to 46 and 54 kDa; p38-MAPK(s) was detected as a band corresponding to approximately 40 kDa, and extracellularly regulated kinases, ERK1 and ERK2, were detected as 44- and 42-kDa bands respectively. The total amounts of 54 kDa JNK, p38-MAPK and ERK2 were similar in all samples, although 46-kDa JNK was reduced in the failing hearts. However, the mean activities of JNKs and p38-MAPK(s) were significantly higher in failing heart samples than in those from donor hearts (P<0.05). There was no significant difference in phosphorylated (activated) ERKs between the two groups. In conclusion, JNKs, p38-MAPK(s) and ERKs are expressed in the human heart and the activities of JNKs and p38-MAPK(s) were increased in heart failure secondary to ischaemic heart disease. These data indicate that JNKs and p38-MAPKs may be important in human cardiac pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac myocyte hypertrophy involves changes in cell structure and alterations in protein expression regulated at both the transcriptional and translational levels. Hypertrophic G protein-coupled receptor (GPCR) agonists such as endothelin-(ET-1) and phenylephrine stimulate a number of protein kinase cascades in the heart. Mitogen-activated protein kinase (MAPK) cascades stimulated include the extracellularly regulated kinase cascade, the stress-activated protein kinase/c-Jun N-terminal kinase cascade, and the p38 MAPK cascade. All 3 pathways have been implicated in hypertrophy, but recent ex vivo evidence also suggests that there may be additional effects on cell survival. ET-1 and phenylephrine also stimulate the protein kinase B pathway, and this may be involved in the regulation of protein synthesis by these agonists. Thus, protein kinase-mediated signaling may be important in the regulation of the development of myocyte hypertrophy.