35 resultados para HPMC capsules
Resumo:
Due to the fact that probiotic cells need to be alive when they are consumed, culture-based analysis (plate count) is critical in ascertaining the quality (numbers of viable cells) of probiotic products. Since probiotic cells are typically stressed, due to various factors related to their production, processing and formulation, the standard methodology for total plate counts tends to underestimate the cell numbers of these products. Furthermore, products such as microencapsulated cultures require modifications in the release and sampling procedure in order to correctly estimate viable counts. This review examines the enumeration of probiotic bacteria in the following commercial products: powders, microencapsulated cultures, frozen concentrates, capsules, foods and beverages. The parameters which are specifically examined include: sample preparation (rehydration, thawing), dilutions (homogenization, media) and plating (media, incubation) procedures. Recommendations are provided for each of these analytical steps to improve the accuracy of the analysis. Although the recommendations specifically target the analysis of probiotics, many will apply to the analysis of commercial lactic starter cultures used in food fermentations as well.
Resumo:
AIMS: The aim of this study was to evaluate the impact of the administration of microencapsulated Lactobacillus plantarum CRL 1815 with two combinations of microbially derived polysaccharides, xanthan : gellan gum (1%:0·75%) and jamilan : gellan gum (1%:1%), on the rat faecal microbiota. METHODS AND RESULTS: A 10-day feeding study was performed for each polymer combination in groups of 16 rats fed either with placebo capsules, free or encapsulated Lact. plantarum or water. The composition of the faecal microbiota was analysed by fluorescence in situ hybridization and temporal temperature gradient gel electrophoresis. Degradation of placebo capsules was detected, with increased levels of polysaccharide-degrading bacteria. Xanthan : gellan gum capsules were shown to reduce the Bifidobacterium population and increase the Clostridium histolyticum group levels, but not jamilan : gellan gum capsules. Only after administration of jamilan : gellan gum-probiotic capsules was detected a significant increase in Lactobacillus-Enterococcus group levels compared to controls (capsules and probiotic) as well as two bands were identified as Lact. plantarum in two profiles of ileum samples. CONCLUSIONS: Exopolysaccharides constitute an interesting approach for colon-targeted delivery of probiotics, where jamilan : gellan gum capsules present better biocompatibility and promising results as a probiotic carrier. SIGNIFICANCE AND IMPACT OF STUDY: This study introduces and highlights the importance of biological compatibility in the encapsulating material election, as they can modulate the gut microbiota by themselves, and the use of bacterial exopolysaccharides as a powerful source of new targeted-delivery coating material.
Resumo:
Seed dormancy induction and alleviation in the winter-flowering moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus are complex and poorly understood. Temperature, light and desiccation were investigated to elucidate their role in the germination ecophysiology of these species. Outdoor and laboratory experiments simulating different seasonal temperatures, seasonal durations, and temperature fluctuations; the presence of light during different seasons; and intermittent drying (during the summer period) over several ‘years’ investigated the importance of these factors in germination. Warm summer-like temperatures (20°C) were necessary for germination at subsequent cooler autumn-like temperatures (greatest at 15°C in G. nivalis and 10°C in N. pseudonarcissus). As the warm temperature duration increased so did germination at subsequent cooler temperatures; further germination occurred in subsequent ‘years’ at cooler temperatures following a second, and also third, warm period. Germination was significantly greater in darkness, particularly in G. nivalis. Dormancy increased with seed maturation period in G. nivalis, because seeds extracted from green capsules germinated more readily than those from yellow. Desiccation increased dormancy in an increasing proportion of N. pseudonarcissus seeds the later they were dried in ‘summer’. Seed viability was only slightly reduced by desiccation in N. pseudonarcissus but was poor and variable in G. nivalis. Shoot formation occurred both at the temperature at which germination was greatest and also if 5°C cooler. In summary, continuous hydration of seeds of both species during warm summer-like temperatures results in the gradual release of seed dormancy; thereafter, darkness and cooler temperatures promote germination. Cold temperatures, increased seed maturity (G. nivalis), and desiccation (N. pseudonarcissus) increase dormancy while light inhibits germination.
Resumo:
This study investigated the stability of freeze dried and fluid bed dried alginate microcapsules coated with chitosan containing model probiotic bacteria, Lactobacillus plantarum, during storage for up to 45 days at different water activities (0.11, 0.23, 0.40 and 0.70) and temperatures (4, 30 and 37 °C). The loss in cell viability was around 0.8 log in the case of fluid bed drying and around 1.3 in the case of freeze drying, with the former method resulting in dried capsules of smaller size (~ 1 mm vs 1.3 mm), more irregular shape, and with a rougher surface. In both cases, the water activity and water content were less than 0.25 and 10% w/w, respectively, which favours high storage stability. The storage stability studies demonstrated that as the water activity and temperature decreased the survival of the dried encapsulated cells increased. Considerably better survival was observed for fluid bed dried encapsulated cells compared to freeze dried encapsulated cells and freeze dried free cells with 10% sucrose (control), and in some cases, e.g. at 4 and 30 °C at water activities of 0.11, 0.23 and 0.40, there was more than 1 log difference after 45 days, with concentrations higher than 108 CFU/g after 45 days of storage. The results indicate that fluid bed drying is an effective and efficient manufacturing method to produce probiotic containing capsules with enhanced storage stability.
Resumo:
Gastrointestinal (GI) models that mimic physiological conditions in vitro are important tools for developing and optimizing biopharmaceutical formulations. Oral administration of live attenuated bacterial vaccines (LBV) can safely and effectively promote mucosal immunity but new formulations are required that provide controlled release of optimal numbers of viable bacterial cells, which must survive gastrointestinal transit overcoming various antimicrobial barriers. Here, we use a gastro-small intestine gut model of human GI conditions to study the survival and release kinetics of two oral LBV formulations: the licensed typhoid fever vaccine Vivotif comprising enteric coated capsules; and an experimental formulation of the model vaccine Salmonella Typhimurium SL3261 dried directly onto cast enteric polymer films and laminated to form a polymer film laminate (PFL). Neither formulation released significant numbers of viable cells when tested in the complete gastro-small intestine model. The poor performance in delivering viable cells could be attributed to a combination of acid and bile toxicity plus incomplete release of cells for Vivotif capsules, and to bile toxicity alone for PFL. To achieve effective protection from intestinal bile in addition to effective acid resistance, bile adsorbent resins were incorporated into the PFL to produce a new formulation, termed BR-PFL. Efficient and complete release of 4.4x107 live cells per dose was achieved from BR-PFL at distal intestinal pH, with release kinetics controlled by the composition of the enteric polymer film, and no loss in viability observed in any stage of the GI model. Use of this in vitro GI model thereby allowed rational design of an oral LBV formulation to maximize viable cell release.