53 resultados para HDL-CHOLESTEROL
Resumo:
The aim of the study was to assess the relation of adiponectin levels with the metabolic syndrome in Asian Indians, a high-risk group for diabetes and premature coronary artery disease. The study was conducted on 100 (50 men and 50 women) type 2 diabetic subjects and 100 age and sex matched subjects with normal glucose tolerance selected from the Chennai Urban Rural Epidemiology Study, an ongoing population study in Chennai in southern India. Metabolic syndrome was defined using modified Adult Treatment Panel III (ATPIII) guidelines. Adiponectin values were significantly lower in diabetic subjects (men: 5.2 vs 8.3 microg/mL, P=.00l; women: 7.6 vs 11.1 microg/mL, P<.00l) and those with the metabolic syndrome (men: 5.0 vs 6.8 microg/mL, P=.01; women: 6.5 vs 9.9 microg/mL, P=.001) compared with those without. Linear regression analysis revealed adiponectin to be associated with body mass index (P<.05), waist circumference (P<.01), fasting plasma glucose (P=.001), glycated hemoglobin (P<.001), triglycerides (P<.00l), high-density lipoprotein (HDL) cholesterol (P<.001), cholesterol/HDL ratio (P<.00l), and insulin resistance measured by homeostasis assessment model (P<.00l). Factor analysis identified 2 factors: factor 1, negatively loaded with adiponectin and HDL cholesterol and positively loaded with triglycerides, waist circumference, and insulin resistance measured by homeostasis assessment model; and factor 2, with a positive loading of waist circumference and systolic and diastolic blood pressure. Logistic regression analysis revealed adiponectin to be negatively associated with metabolic syndrome (odds ratio [OR], 0.365; P<.001) even after adjusting for age (OR, 0.344; P<.00l), sex (OR, 0.293; P<.001), and body mass index (OR, 0.292; P<.00l). Lower adiponectin levels are associated with the metabolic syndrome per se and several of its components, particularly, diabetes, insulin resistance, and dyslipidemia in this urban south Indian population.
Resumo:
There is evidence that various phenolic compounds (such as oleuropein, tyrosol and hydroxytyrosol) found in virgin olive oil may be responsible for the beneficial effects on cardiovascular disease. In the EU there is an authorized health claim that‘olive oil polyphenols contribute to the protection of blood lipids from oxidative stress’ on the basis of human studies showing significantly reduced levels of oxidized LDL in plasma after virgin olive oil consumption. The claim may be used only for olive oil that contains at least 5 mg of hydroxytyrosol and its derivatives per 20 g of olive oil. Other claims proposed (including maintenance of normal blood pressure and HDL cholesterol concentration, and anti-inflammatory properties) were rejected.
Resumo:
BACKGROUND: Apolipoprotein (apo)B is the structural apoprotein of intestinally- and liver- derived lipoproteins and plays an important role in the transport of triacylglycerol (TAG) and cholesterol. Previous studies have examined the association between the APOB insertion/deletion (ins/del) polymorphism (rs17240441) and postprandial lipaemia in response to a single meal; however the findings have been inconsistent with studies often underpowered to detect genotype-lipaemia associations, focused mainly on men, or with limited postprandial characterisation of participants. In the present study, using a novel sequential test meal protocol which more closely mimics habitual eating patterns, we investigated the impact of APOB ins/del polymorphism on postprandial TAG, non-esterified fatty acids, glucose and insulin levels in healthy adults. FINDINGS: Healthy participants (n = 147) consumed a standard test breakfast (0 min; 49 g fat) and lunch (330 min; 29 g fat), with blood samples collected before (fasting) and on 11 subsequent occasions until 480 min after the test breakfast. The ins/ins homozygotes had higher fasting total cholesterol, LDL-cholesterol, TAG, insulin and HOMA-IR and lower HDL-cholesterol than del/del homozygotes (P < 0.017). A higher area under the time response curve (AUC) was evident for the postprandial TAG (P < 0.001) and insulin (P = 0.032) responses in the ins/ins homozygotes relative to the del/del homozygotes, where the genotype explained 35% and 7% of the variation in the TAG and insulin AUCs, respectively. CONCLUSIONS: In summary, our findings indicate that the APOB ins/del polymorphism is likely to be an important genetic determinant of the large inter-individual variability in the postprandial TAG and insulin responses to dietary fat intake.
Resumo:
Cocoa flavanol (CF) intake improves endothelial function in patients with cardiovascular risk factors and disease. We investigated the effects of CF on surrogate markers of cardiovascular health in low risk, healthy, middle-aged individuals without history, signs or symptoms of CVD. In a 1-month, open-label, one-armed pilot study, bi-daily ingestion of 450 mg of CF led to a time-dependent increase in endothelial function (measured as flow-mediated vasodilation (FMD)) that plateaued after 2 weeks. Subsequently, in a randomised, controlled, double-masked, parallel-group dietary intervention trial (Clinicaltrials.gov: NCT01799005), 100 healthy, middle-aged (35–60 years) men and women consumed either the CF-containing drink (450 mg) or a nutrient-matched CF-free control bi-daily for 1 month. The primary end point was FMD. Secondary end points included plasma lipids and blood pressure, thus enabling the calculation of Framingham Risk Scores and pulse wave velocity. At 1 month, CF increased FMD over control by 1·2 % (95 % CI 1·0, 1·4 %). CF decreased systolic and diastolic blood pressure by 4·4 mmHg (95 % CI 7·9, 0·9 mmHg) and 3·9 mmHg (95 % CI 6·7, 0·9 mmHg), pulse wave velocity by 0·4 m/s (95 % CI 0·8, 0·04 m/s), total cholesterol by 0·20 mmol/l (95 % CI 0·39, 0·01 mmol/l) and LDL-cholesterol by 0·17 mmol/l (95 % CI 0·32, 0·02 mmol/l), whereas HDL-cholesterol increased by 0·10 mmol/l (95 % CI 0·04, 0·17 mmol/l). By applying the Framingham Risk Score, CF predicted a significant lowering of 10-year risk for CHD, myocardial infarction, CVD, death from CHD and CVD. In healthy individuals, regular CF intake improved accredited cardiovascular surrogates of cardiovascular risk, demonstrating that dietary flavanols have the potential to maintain cardiovascular health even in low-risk subjects.
Resumo:
Background: Previous data support the benefits of reducing dietary saturated fatty acids (SFAs) on insulin resistance (IR) and other metabolic risk factors. However, whether the IR status of those suffering from metabolic syndrome (MetS) affects this response is not established. OBJECTIVE: Our objective was to determine whether the degree of IR influences the effect of substituting high-saturated fatty acid (HSFA) diets by isoenergetic alterations in the quality and quantity of dietary fat on MetS risk factors. DESIGN: In this single-blind, parallel, controlled, dietary intervention study, MetS subjects (n = 472) from 8 European countries classified by different IR levels according to homeostasis model assessment of insulin resistance (HOMA-IR) were randomly assigned to 4 diets: an HSFA diet; a high-monounsaturated fatty acid (HMUFA) diet; a low-fat, high-complex carbohydrate (LFHCC) diet supplemented with long-chain n-3 polyunsaturated fatty acids (1.2 g/d); or an LFHCC diet supplemented with placebo for 12 wk (control). Anthropometric, lipid, inflammatory, and IR markers were determined. RESULTS: Insulin-resistant MetS subjects with the highest HOMA-IR improved IR, with reduced insulin and HOMA-IR concentrations after consumption of the HMUFA and LFHCC n-3 diets (P < 0.05). In contrast, subjects with lower HOMA-IR showed reduced body mass index and waist circumference after consumption of the LFHCC control and LFHCC n-3 diets and increased HDL cholesterol concentrations after consumption of the HMUFA and HSFA diets (P < 0.05). MetS subjects with a low to medium HOMA-IR exhibited reduced blood pressure, triglyceride, and LDL cholesterol levels after the LFHCC n-3 diet and increased apolipoprotein A-I concentrations after consumption of the HMUFA and HSFA diets (all P < 0.05). CONCLUSIONS: Insulin-resistant MetS subjects with more metabolic complications responded differently to dietary fat modification, being more susceptible to a health effect from the substitution of SFAs in the HMUFA and LFHCC n-3 diets. Conversely, MetS subjects without IR may be more sensitive to the detrimental effects of HSFA intake. The metabolic phenotype of subjects clearly determines response to the quantity and quality of dietary fat on MetS risk factors, which suggests that targeted and personalized dietary therapies may be of value for its different metabolic features.
Resumo:
It has previously been shown that experimental infections of the parasitic trematode Schistosoma mansoni, the adult worms of which reside in the blood stream of the mammalian host, significantly reduced atherogenesis in apolipoprotein E gene knockout (apoE(-/-)) mice. These effects occurred in tandem with a lowering of serum total cholesterol levels in both apoE(-/-) and random-bred laboratory mice and a beneficial increase in the proportion of HDL to LDL cholesterol. To better understand how the parasitic infections induce these effects we have here investigated the involvement of adult worms and their eggs on lipids in the host. Our results indicate that the serum cholesterol-lowering effect is mediated by factors released from S. mansoni eggs, while the presence of adult worms seemed to have had little or no effect. It was also observed that high levels of lipids, particularly triacylglycerols and cholesteryl esters, present in the uninfected livers of both random-bred and apoE(-/-) mice fed a high-fat diet were not present in livers of the schistosome-infected mice. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A new macroporous stationary phase bearing 'tweezer' receptors that exhibit specificity for cholesterol has been constructed from rigid multifunctional vinylic monomers derived from 3,5-dibromobenzoic acid, propargyl alcohol and cholesterol. The synthesis of the novel tweezer monomer that contains two cholesterol receptor arms using palladium mediated Sonogashira methodologies and carbonate couplings is reported. The subsequent co-polymerisation of this tweezer monomer with a range of cross-linking agents via a 'pseudo' molecular imprinting approach afforded a diverse set of macroporous materials. The selectivity and efficacy of these materials for cholesterol binding was assessed using a chromatographic screening process. The optimum macroporous stationary phase material composition was subsequently used to construct monolithic solid phase extraction columns for use in the selective extraction of cholesterol from multi-component mixtures of structurally related steroids.
Resumo:
This study evaluated the use of a bile-salt-hydrolyzing Lactobacillus fermentum strain as a probiotic with potential hypocholesterolemic properties. The effect of L. fermentum on representative microbial populations and overall metabolic activity of the human intestinal microbiota was investigated using a three-stage continuous culture system. Also, the use of galactooligosaccharides as a prebiotic to enhance growth and/or activity of the Lactobacillus strain was evaluated. Administration of L. fermentum resulted in a decrease in the overall bifidobacterial population (ca. 1 log unit). In the in vitro system, no significant changes were observed in the total bacterial, Lactobacillus, Bacteroides, and clostridial populations through L. fermentum supplementation. Acetate production decreased by 9 to 27%, while the propionate and butyrate concentrations increased considerably (50 to 90% and 52 to 157%, respectively). A general, although lesser, increase in the production of lactate was observed with the administration of the L. fermentum strain. Supplementation of the prebiotic to the culture medium did not cause statistically significant changes in either the numbers or the activity of the microbiota, although an increase in the butyrate production was seen (29 to 39%). Results from this in vitro study suggest that L.Fermentum KC5b is a candidate probiotic which may affect cholesterol metabolism. The short-chain fatty acid concentrations, specifically the molar proportion of propionate and/or bile salt deconjugation, are probably the major mechanism involved in the purported cholesterol-lowering properties of this strain.
Resumo:
High circulating levels of triglyceride-rich lipoproteins (TGRL) represent an independent risk factor for coronary artery disease. Here, we show that TGRL inhibit the efflux of cholesterol from 'foam cell' macrophages to lipid-poor apolipoprotein (apo) A1, and may thereby inhibit arterial reverse cholesterol transport and promote the formation of atherosclerotic lesions. Human (THP-1) monocyte-derived macrophages were pre-incubated (48h) with acetylated low-density lipoprotein (AcLDL) to provide a foam cell model of cholesterol efflux to apoA1. Pre-incubation of macrophage 'foam cells' with TGRL (0-200 mug/ml, 0-24 h) inhibited the efflux of exogenously radiolabelled ([H-3]), endogenously synthesised ([C-14]) and cellular cholesterol mass to lipid-poor apoA1, but not control medium, during a (subsequent) efflux period. This inhibition is dependent upon the length of prior exposure to, and concentration of, TGRL employed, but is independent of changes in intracellular triglyceride accumulation or turnover of the cholesteryl ester pool. Despite the negative impact of TGRL on cholesterol efflux, major proteins involved in this process-namely apoE, ABCA1, SR-B1 and caveolin-1-were unaffected by TGRL pre-incubation, suggesting that exposure to these lipoproteins inhibits an alternate, and possibly novel, anti-atherogenic pathway. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
OBJECTIVE: To determine whether the positive statistical associations between measures of total and regional adiposity and measures of glucose, insulin and triacylglycerol ( TAG) metabolism reported in Caucasian men, are also observed in UK Sikhs. DESIGN: A matched cross-sectional study in which each volunteer provided a blood sample after a 12-h overnight fast and had anthropometric measurements taken. SUBJECTS: A total of 55 healthy Caucasian and 55 healthy UK Sikh men were recruited. The Caucasian and Sikh men were matched for age ( 48.7 +/- 10.9 and 48.3 +/- 10.0 y, respectively) and body mass index (BMI) ( 26.1 +/- 2.8 and 26.3 +/- 3.2 kg/m(2), respectively). MEASUREMENTS: Anthropometric measurements were performed to assess total and regional fat depots. The concentrations of plasma total cholesterol, high-density cholesterol (HDL- C), low-density cholesterol (LDL-C) and small dense LDL (LDL3), TAG, glucose, fasting insulin (ins) and nonesterified fatty acids (NEFA) were analysed in fasted plasma. Surrogate measures of insulin resistance (HOMA-IR) and insulin sensitivity (RQUICKI) were calculated from insulin and glucose (HOMA-IR) and insulin, glucose and NEFA ( RQUICKI) measurements. RESULTS: The Sikh men had significantly higher body fat, with the sum of the four skinfold measurements (Ssk) ( P = 0.0001) and subscapular skinfold value (P = 0.009) higher compared with the Caucasian men. The Sikh volunteers also had characteristics of the metabolic syndrome: lower HDL-C (P = 0.07), higher TAG (P = 0.004), higher % LDL3 (P = 0.0001) and insulin resistance (P = 0.05). Both ethnic groups demonstrated positive correlations between insulin and waist circumference (Caucasian: r = 0.661, P = 0.0001; Sikh: r = 0.477, P = 0.0001). The Caucasian men also demonstrated significant positive correlations between central adiposity (r = 0.275, P = 0.04), other measures of adiposity (BMI and suprailiac skinfold) and plasma TAG, whereas the Sikh men showed no correlation for central adiposity (r = 0.019, ns) and TAG with a trend to a negative relationship between other measures ( Ssk and suprailiac) which reached near significance for subscapular skinfold and TAG (r = - 0.246, P = 0.007). The expected positive association between insulin and TAG was observed in the Caucasian men (r = 0.318, P = 0.04) but not in the Sikh men (r = 0.011, ns). CONCLUSIONS: In the Caucasian men, the expected positive association between plasma TAG and centralized body fat was observed. However, a lack of association between centralized, or any other measure of adiposity, and plasma TAG was observed in the matched Sikh men, although both ethnic groups showed the positive association between centralized body fat and insulin resistance, which was less strong for Sikhs. These findings in the Sikh men were not consistent with the hypothesis that there is a clear causal relationship between body fat and its distribution, insulin resistance, and lipid abnormalities associated with the metabolic syndrome, in this ethnic group.
Resumo:
Objective: To determine whether dietary supplementation with a natural carotenoid mixture counteracts the enhancement of oxidative stress induced by consumption of fish oil. Design: A randomised double-blind crossover dietary intervention. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Subjects and intervention: A total of 32 free-living healthy nonsmoking volunteers were recruited by posters and e-mails in The University of Reading. One volunteer withdrew during the study. The volunteers consumed a daily supplement comprising capsules containing fish oil (4 x 1 g) or fish oil (4 x 1 g) containing a natural carotenoid mixture (4 x 7.6 mg) for 3 weeks in a randomised crossover design separated by a 12 week washout phase. The carotenoid mixture provided a daily intake of beta-carotene (6.0 mg), alpha-carotene (1.4 mg), lycopene (4.5 mg), bixin (11.7 mg), lutein (4.4 mg) and paprika carotenoids (2.2 mg). Blood and urine samples were collected on days 0 and 21 of each dietary period. Results: The carotenoid mixture reduced the fall in ex vivo oxidative stability of low-density lipoprotein (LDL) induced by the fish oil (P = 0.045) and it reduced the extent of DNA damage assessed by the concentration of 8-hydroxy-2'-deoxyguanosine in urine (P = 0.005). There was no effect on the oxidative stability of plasma ex vivo assessed by the oxygen radical absorbance capacity test. beta- Carotene, alpha-carotene, lycopene and lutein were increased in the plasma of subjects consuming the carotenoid mixture. Plasma triglyceride levels were reduced significantly more than the reduction for the fish oil control (P = 0.035), but total cholesterol, HDL and LDL levels were not significantly changed by the consumption of the carotenoid mixture. Conclusions: Consumption of the natural carotenoid mixture lowered the increase in oxidative stress induced by the fish oil as assessed by ex vivo oxidative stability of LDL and DNA degradation product in urine. The carotenoid mixture also enhanced the plasma triglyceride-lowering effect of the fish oil.
Resumo:
OBJECTIVE: To compare insulin sensitivity (Si) from a frequently sampled intravenous glucose tolerance test (FSIGT) and subsequent minimal model analyses with surrogate measures of insulin sensitivity and resistance and to compare features of the metabolic syndrome between Caucasians and Indian Asians living in the UK. SUBJECTS: In all, 27 healthy male volunteers (14 UK Caucasians and 13 UK Indian Asians), with a mean age of 51.2 +/- 1.5 y, BMI of 25.8 +/- 0.6 kg/m(2) and Si of 2.85 +/- 0.37. MEASUREMENTS: Si was determined from an FSIGT with subsequent minimal model analysis. The concentrations of insulin, glucose and nonesterified fatty acids (NEFA) were analysed in fasting plasma and used to calculate surrogate measure of insulin sensitivity (quantitative insulin sensitivity check index (QUICKI), revised QUICKI) and resistance (homeostasis for insulin resistance (HOMA IR), fasting insulin resistance index (FIRI), Bennetts index, fasting insulin, insulin-to-glucose ratio). Plasma concentrations of triacylglycerol (TAG), total cholesterol, high density cholesterol, (HDL-C) and low density cholesterol, (LDL-C) were also measured in the fasted state. Anthropometric measurements were conducted to determine body-fat distribution. RESULTS: Correlation analysis identified the strongest relationship between Si and the revised QUICKI (r = 0.67; P = 0.000). Significant associations were also observed between Si and QUICKI (r = 0.51; P = 0.007), HOMA IR (r = -0.50; P = 0.009), FIRI and fasting insulin. The Indian Asian group had lower HDL-C (P = 0.001), a higher waist-hip ratio (P = 0.01) and were significantly less insulin sensitive (Si) than the Caucasian group (P = 0.02). CONCLUSION: The revised QUICKI demonstrated a statistically strong relationship with the minimal model. However, it was unable to differentiate between insulin-sensitive and -resistant groups in this study. Future larger studies in population groups with varying degrees of insulin sensitivity are recommended to investigate the general applicability of the revised QUICKI surrogate technique.
Resumo:
Oligofructose (OF), comprised of fructose oligomers with a terminal glucose unit, is a family Of oligosaccharides derived from the hydrolysis of inulin. Consumption of OF in animals and humans increases colonic bifidobacteria levels. The present study evaluates the safety of OF in both a 13 week rat feeding Study and Using in Vitro mutagenicity tests. Fecal bifidobacteria levels were also determined by in situ hybridization to assess a biological function of OF. Rats received either a control diet OF diets containing one of four doses of OF. Total, HDL, and LDL-cholesterol levels were significantly lower at several time points during the study in groups receiving OF compared to controls with the largest effects Occurring in the high dose male animals. Weight gain in the male high dose group was significantly lower at early time points compared to controls but]lot Significantly different at the end of study. As expected, cecal weights increased in a dose-related manner and fecal bifidobacteria levels also demonstrated a dose-related increase. There were no consistent differences in gross pathology or histopathology related to dietary OF. OF did not induce a positive response in the Ames test or chromosomal aberration test with CHO cells. These results demonstrate no adverse effects of OF. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To investigate the impact of apolipoprotein E (apoE) genotype on the response of the plasma lipoprotein profile to eicosapentaenoic acid (EPA) versus docosahexaenoic acid (DHA) intervention in humans. Methods and results: 38 healthy normolipidaemic males, prospectively recruited on the basis of apoE genotype (n = 20 E3/E3 and n = 18 E3/E4), completed a double-blind placebo-controlled cross-over trial, consisting of 3 × 4 week intervention arms of either control oil, EPA-rich oil (ERO, 3.3 g EPA/day) or DHA-rich oil (DRO, 3.7 g DHA/day) in random order, separated by 10 week wash-out periods. A significant genotype-independent 28% and 19% reduction in plasma triglycerides in response to ERO and DRO was observed. For total cholesterol (TC), no significant treatment effects were evident; however a significant genotype by treatment interaction emerged (P = 0.045), with a differential response to ERO and DRO in E4 carriers. Although the genotype × treatment interaction for LDL-cholesterol (P = 0.089) did not reach significance, within DRO treatment analysis indicated a 10% increase in LDL (P = 0.029) in E4 carriers with a non-significant 4% reduction in E3/E3 individuals. A genotype-independent increase in LDL mass was observed following DRO intervention (P = 0.018). Competitive uptake studies in HepG2 cells using plasma very low density lipoproteins (VLDL) from the human trial, indicated that following DRO treatment, VLDL2 fractions obtained from E3/E4 individuals resulted in a significant 32% (P = 0.002) reduction in LDL uptake relative to the control. Conclusions: High dose DHA supplementation is associated with increases in total cholesterol in E4 carriers, which appears to be due to an increase in LDL-C and may in part negate the cardioprotective action of DHA in this population subgroup.