37 resultados para H-2 SENSING PROPERTIES
Resumo:
Three novel heteroleptic complexes of the type cis- [ML(dppe)] [M = Ni(II), Pd(II), Pt(II); L = p-tolylsulfonyl dithiocarbimate; dppe = 1,2-bis(diphenylphosphino)ethane] have been prepared and characterized. X-ray crystallography revealed the close proximity of one of the ortho phenyl protons of the dppe ligand to the metal in the Ni(II) complex showing existence of the less common C-H center dot center dot center dot Ni anagostic interactions observed for the first time in the dithio-phosphine mixed-ligand systems. The platinum complex showed a strong photoluminescence emission near visible region in CH(2)Cl(2) solution.
Resumo:
A new family of vanadium-substituted chromium sulfides (VxCr2-xS3, 0 < x < 2) has been prepared and characterized by powder X-ray and neutron diffraction, SQUID magnetometry, electrical resistivity, and Seebeck coefficient measurements. Vanadium substitution leads to a single-phase region with a rhombohedral Cr2S3 structure over the composition range 0.0 < x e 0.75, while at higher vanadium contents (1.6 e x < 2.0) a second single-phase region, in which materials adopt a cation-deficient Cr3S4 structure, is observed. Materials with the Cr2S3 structure all exhibit semiconducting behavior. However, both transport and magnetic properties indicate an increasing degree of electron delocalization with increasing vanadium content in this compositional region. Materials that adopt a Cr3S4-type structure exhibit metallic behavior. Magnetic susceptibility data reveal that all materials undergo a magnetic ordering transition at temperatures in the range 90–118 K. Low-temperature magnetization data suggest that this involves a transition to a ferrimagnetic state.
Resumo:
Contrails and especially their evolution into cirrus-like clouds are thought to have very important effects on local and global radiation budgets, though are generally not well represented in global climate models. Lack of contrail parameterisations is due to the limited availability of in situ contrail measurements which are difficult to obtain. Here we present a methodology for successful sampling and interpretation of contrail microphysical and radiative data using both in situ and remote sensing instrumentation on board the FAAM BAe146 UK research aircraft as part of the COntrails Spreading Into Cirrus (COSIC) study.
Resumo:
We present a summary of the principal physical and optical properties of aerosol particles using the FAAM BAE-146 instrumented aircraft during ADRIEX between 27 August and 6 September 2004, augmented by sunphotometer, lidar and satellite retrievals. Observations of anthropogenic aerosol, principally from industrial sources, were concentrated over the northern Adriatic Sea and over the Po Valley close to the aerosol sources. An additional flight was also carried out over the Black Sea to compare east and west European pollution. Measurements show the single-scattering albedo of dry aerosol particles to vary considerably between 0.89 and 0.97 at a wavelength of 0.55 μm, with a campaign mean within the polluted lower free troposphere of 0.92. Although aerosol concentrations varied significantly from day to day and during individual days, the shape of the aerosol size distribution was relatively consistent through the experiment, with no detectable change observed over land and over sea. There is evidence to suggest that the pollution aerosol within the marine boundary layer was younger than that in the elevated layer. Trends in the aerosol volume distribution show consistency with multiple-site AERONET radiometric observations. The aerosol optical depths derived from aircraft measurements show a consistent bias to lower values than both the AERONET and lidar ground-based radiometric observations, differences which can be explained by local variations in the aerosol column loading and by some aircraft instrumental artefacts. Retrievals of the aerosol optical depth and fine-mode (<0.5 μm radius) fraction contribution to the optical depth using MODIS data from the Terra and Aqua satellites show a reasonable level of agreement with the AERONET and aircraft measurements.
Resumo:
An efficient synthesis of spirocyclic triazolooxazine nucleosides is described. This was achieved by the conversion of β-D-psicofuranose to the corresponding azido-derivative, followed by alkylation of the primary alcohol with a range of propargyl bromides - obtained via Sonogashira chemistry. The products of these reactions underwent 1,3-dipolar addition smoothly to generate the protected spirocyclic adducts. These were easily deprotected to give the corresponding ribose nucleosides. The library of compounds obtained was investigated for its antiviral activity, using MHV (Mouse Hepatitis Virus) as a model wherein derivative 3f showed the most promising activity and tolerability.
Resumo:
The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish winters could pose problems, but, due to the built-in heating systems, low ambient temperatures had no, or only a minor, impact on the lidar operation – including scanning-head motion. However, accumulation of snow and ice on the lens has been observed, which can lead to the formation of a water/ice layer thus attenuating the signal inconsistently. Thus, care must be taken to ensure continuous snow removal.
Resumo:
A new generation of high-resolution (1 km) forecast models promises to revolutionize the prediction of hazardous weather such as windstorms, flash floods, and poor air quality. To realize this promise, a dense observing network, focusing on the lower few kilometers of the atmosphere, is required to verify these new forecast models with the ultimate goal of assimilating the data. At present there are insufficient systematic observations of the vertical profiles of water vapor, temperature, wind, and aerosols; a major constraint is the absence of funding to install new networks. A recent research program financed by the European Union, tasked with addressing this lack of observations, demonstrated that the assimilation of observations from an existing wind profiler network reduces forecast errors, provided that the individual instruments are strategically located and properly maintained. Additionally, it identified three further existing European networks of instruments that are currently underexploited, but with minimal expense they could deliver quality-controlled data to national weather services in near–real time, so the data could be assimilated into forecast models. Specifically, 1) several hundred automatic lidars and ceilometers can provide backscatter profiles associated with aerosol and cloud properties and structures with 30-m vertical resolution every minute; 2) more than 20 Doppler lidars, a fairly new technology, can measure vertical and horizontal winds in the lower atmosphere with a vertical resolution of 30 m every 5 min; and 3) about 30 microwave profilers can estimate profiles of temperature and humidity in the lower few kilometers every 10 min. Examples of potential benefits from these instruments are presented.