51 resultados para Glaskeramik, Dielektrika, Paraelektrika, TiO2, GHz


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several simple gold compounds and their physical mixtures with TiO2 Were tested for low temperature CO oxidation. No true catalytic activity was found for gold precursors on their own, although both Au2O3 and Au(OH)(3) react well with CO even at room temperature in a non-catalytic manner. Despite that catalytic activity was obtained by physically mixing Au(OH)(3) or Au2O3 with TiO2 and the results further emphasise the importance of a good contact between the gold and the support for good CO oxidation activity. (c) 2005 Published by Elsevier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars. This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined. This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strong metal support interaction (SMSI) was first described in 1978 by Tauster [1-4]. The effect was observed as a severely negative effect on CO and H2 uptake on the catalyst after high temperature calcination under reducing conditions (heating above ~ 700 K) [1,2]. It also had a negative effect on the reaction rate for reactions, such as alkane hydrogenolysis [5,6]. It appeared that the effect occurred for catalysts comprised of reducible supports which were treated at elevated temperature in reducing conditions [2-4]. A classic support which has manifested this behaviour in many studies is TiO2. Over the years following the first discovery of SMSI it has been recognised that the effect is not always negative – for instance for the CO-H2 reaction for which it appears to have a positive effect [5,6]. Further it was noted that hydrogen reduction was not necessary to observe the effect of CO adsorption suppression, it also occurs by vacuum treatment [7], though it should be noted that vacuum treatment at elevated temperature is, in effect, a reducing environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have employed a combination of experimental surface science techniques and density functional calculations to study the reduction of TiO2(110) surfaces through the doping with submonolayer transition metals. We concentrate on the role of Ti adatoms in self doping of rutile and contrast the behaviour to that of Cr. DFT+U calculations enable identification of probable adsorption structures and their spectroscopic characteristics. Adsorption of both metals leads to a broken symmetry and an asymmetric charge transfer localised around the defect site of a mixed localised/delocalised character. Charge transfer creates defect states with Ti 3d character in the band gap at similar to 1-eV binding energy. Cr adsorption, however, leads to a very large shift in the valence-band edge to higher binding energy and the creation of Cr 3d states at 2.8-eV binding energy. Low-temperature oxidation lifts the Ti-derived band-gap states and modifies the intensity of the Cr features, indicative of a change of oxidation state from Cr3+ to Cr4+. Higher temperature processing leads to a loss of Cr from the surface region, indicative of its substitution into the bulk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epitaxial ultrathin titanium dioxide films of 0.3 to similar to 7 nm thickness on a metal single crystal substrate have been investigated by high resolution vibrational and electron spectroscopies. The data complement previous morphological data provided by scanned probe microscopy and low energy electron diffraction to provide very complete characterization of this system. The thicker films display electronic structure consistent with a stoichiometric TiO2 phase. The thinner films appear nonstoichiometric due to band bending and charge transfer from the metal substrate, while work function measurements also show a marked thickness dependence. The vibrational spectroscopy shows three clear phonon bands at 368, 438, and 829 cm(-1) (at 273 K), which confirms a rutile structure. The phonon band intensity scales linearly with film thickness and shift slightly to lower frequencies with increasing temperature, in accord with results for single crystals. (c) 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the structure of a complex rhodium carbonyl chloride [Rh(CO)(2)Cl] molecule adsorbed on the TiO2 (110) surface by the normal incidence x-ray standing wave technique. The data show that the technique is applicable to reducible oxide systems and that the dominant adsorbed species is undissociated with Rh binding atop bridging oxygen and to the Cl found close to the fivefold coordinated Ti ions in the surface. A minority geminal dicarboryl species, where Rh-Cl bond scission has occurred, is found bridging the bridging oxygen ions forming a high-symmetry site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication and characterization of micromachined reduced-height air-filled rectangular waveguide components suitable for integration is reported in this paper. The lithographic technique used permits structures with heights of up to 100 μm to be successfully constructed in a repeatable manner. Waveguide S-parameter measurements at frequencies between 75-110 GHz using a vector network analyzer demonstrate low loss propagation in the TE10 mode reaching 0.2 dB per wavelength. Scanning electron microscope photographs of conventional and micromachined waveguides show that the fabrication technique can provide a superior surface finish than possible with commercially available components. In order to circumvent problems in efficiently coupling free-space propagating beams to the reduced-height G-band waveguides, as well as to characterize them using quasi-optical techniques, a novel integrated micromachined slotted horn antenna has been designed and fabricated, E-, H-, and D-plane far-field antenna pattern measurements at different frequencies using a quasi-optical setup show that the fabricated structures are optimized for 180-GHz operation with an E-plane half-power beamwidth of 32° elevated 35° above the substrate, a symmetrical H-plane pattern with a half-power beamwidth of 23° and a maximum D-plane cross-polar level of -33 dB. Far-field pattern simulations using HFSS show good agreement with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel technique for the noninvasive continuous measurement of leaf water content is presented. The technique is based on transmission measurements of terahertz radiation with a null-balance quasi-optical transmissometer operating at 94 GHz. A model for the propagation of terahertz radiation through leaves is presented. This, in conjunction with leaf thickness information determined separately, may be used to quantitatively relate transmittance measurements to leaf water content. Measurements using a dispersive Fourier transform spectrometer in the range of 100 GHz-500 GHz using Phormium tenax and Fatsia japonica leaves are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first measurement of the relative permittivity (εr) and loss tangent (tan δ) of EPON™ SU-8 advanced thick film ultraviolet photoresist is reported at frequencies between 75–110 GHz (W-band). The problems associated with such a measurement are discussed, an error analysis given, and values of εr=1.725±0.08 and tanδ =0.02±0.001 are determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel wide-band noise source for millimetre-wave spectrometry is described. It uses power combined Schottky diodes, reverse biased to avalanche breakdown, mounted in a wide-band tapered slot antenna. Power has been produced from 15 to 200 GHz with an equivalent temperature of 28200 K at 40 GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moist convection is well known to be generally more intense over continental than maritime regions, with larger updraft velocities, graupel, and lightning production. This study explores the transition from maritime to continental convection by comparing the trends in Tropical Rainfall Measuring Mission (TRMM) radar and microwave (37 and 85 GHz) observations over islands of increasing size to those simulated by a cloud-resolving model. The observed storms were essentially maritime over islands of <100 km2 and continental over islands >10 000 km2, with a gradual transition in between. Equivalent radar and microwave quantities were simulated from cloud-resolving runs of the Weather Research and Forecasting model via offline radiation codes. The model configuration was idealized, with islands represented by regions of uniform surface heat flux without orography, using a range of initial sounding conditions without strong horizontal winds or aerosols. Simulated storm strength varied with initial sounding, as expected, but also increased sharply with island size in a manner similar to observations. Stronger simulated storms were associated with higher concentrations of large hydrometeors. Although biases varied with different ice microphysical schemes, the trend was similar for all three schemes tested and was also seen in 2D and 3D model configurations. The successful reproduction of the trend with such idealized forcing supports previous suggestions that mesoscale variation in surface heating—rather than any difference in humidity, aerosol, or other aspects of the atmospheric state—is the main reason that convection is more intense over continents and large islands than over oceans. Some dynamical storm aspects, notably the peak rainfall and minimum surface pressure low, were more sensitive to surface forcing than to the atmospheric sounding or ice scheme. Large hydrometeor concentrations and simulated microwave and radar signatures, however, were at least as sensitive to initial humidity levels as to surface forcing and were more sensitive to the ice scheme. Issues with running the TRMM simulator on 2D simulations are discussed, but they appear to be less serious than sensitivities to model microphysics, which were similar in 2D and 3D. This supports the further use of 2D simulations to economically explore modeling uncertainties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5–1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and/or to detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a global radar calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the Radar System Airborne (RASTA) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses resulting from the change in configuration that required verification of the RASTA calibration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.