47 resultados para Future scenarios


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interest in the impacts of climate change is ever increasing. This is particularly true of the water sector where understanding potential changes in the occurrence of both floods and droughts is important for strategic planning. Climate variability has been shown to have a significant impact on UK climate and accounting for this in future climate cahgne projections is essential to fully anticipate potential future impacts. In this paper a new resampling methodology is developed which includes the variability of both baseline and future precipitation. The resampling methodology is applied to 13 CMIP3 climate models for the 2080s, resulting in an ensemble of monthly precipitation change factors. The change factors are applied to the Eden catchment in eastern Scotland with analysis undertaken for the sensitivity of future river flows to the changes in precipitation. Climate variability is shown to influence the magnitude and direction of change of both precipitation and in turn river flow, which are not apparent without the use of the resampling methodology. The transformation of precipitation changes to river flow changes display a degree of non-linearity due to the catchment's role in buffering the response. The resampling methodology developed in this paper provides a new technique for creating climate change scenarios which incorporate the important issue of climate variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the possibilities and limitations of using Regional Climate Model (RCM) output for the simulation of alpine permafrost scenarios. It focuses on the general problem of scale mismatch between RCMs and impact models and, in particular, the special challenges that arise when driving an impact model in topographically complex high-mountain environments with the output of an RCM. Two approaches are introduced that take into account the special difficulties in such areas, and thus enable the use of RCM for alpine permafrost scenario modelling. Intended as an initial example, they are applied at the area of Corvatsch (Upper Engadine, Switzerland) in order to demonstrate and discuss the application of the two approaches, rather than to provide an assessment of future changes in permafrost occurrence. There are still many uncertainties and inaccuracies inherent in climate and impact models, which increase when driving one model with the output of the other. Nevertheless, our study shows that the use of RCMs offers new and promising perspectives for the simulation of high-mountain permafrost scenarios

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A statistical–dynamical downscaling (SDD) approach is applied to determine present day and future high-resolution rainfall distributions in the catchment of the river Aksu at the southern slopes of the Tienshan Mountains, Central Asia. First, a circulation weather type (CWT) classification is employed to define typical lower atmospheric flow regimes from ERA-40 reanalysis data. Selected representatives of each CWT are dynamically downscaled with the regional climate model COSMO-CLM 4.8 at a horizontal grid resolution of 0.0625°, using the ERA-40 reanalysis data as boundary conditions. Finally, the simulated representatives are recombined to obtain a high-resolution rainfall climatology for present day climate. The methodology is also applied to ensemble simulations of three different scenarios of the global climate model ECHAM5/MPI-OM1 to derive projections of rainfall changes until 2100. Comparisons of downscaled seasonal and annual rainfall with observational data suggest that the statistical–dynamical approach is appropriate to capture the observed present-day precipitation climatology over the low lands and the first elevations of the Tienshan Mountains. On the other hand, a strong bias is found at higher altitudes, where precipitation is clearly underestimated by SDD. The application of SDD to the ECHAM5/MPI-OM1 ensemble reveals that precipitation changes by the end of the 21st century depend on the season. While for autumn an increase of seasonal precipitation is found for all simulations, a decrease in precipitation is obtained during winter for most parts of the Aksu catchment. The spread between different ECHAM5/MPI-OM1 ensemble members is strongest in spring, where trends of opposite sign are found. The largest changes in rainfall are simulated for the summer season, which also shows the most pronounced spatial heterogeneity. Most ECHAM5/MPI-OM1 realizations indicate a decrease of annual precipitation over large parts of the Tienshan, and an increase restricted to the southeast of the study area. These results provide a good basis for downscaling present-day and future rainfall distributions for hydrological purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Possible changes in the frequency and intensity of windstorms under future climate conditions during the 21st century are investigated based on an ECHAM5 GCM multi-scenario ensemble. The intensity of a storm is quantified by the associated estimated loss derived with using an empirical model. The geographical focus is ‘Core Europe’, which comprises countries of Western Europe. Possible changes of losses are analysed by comparing ECHAM5 GCM data for recent (20C, 1960 to 2000) and future climate conditions (B1, A1B, A2; 2060 to 2100), each with 3 ensemble members. Changes are quantified using both rank statistics and return periods (RP) estimated by fitting an extreme value distribution using the peak over threshold method to potential storm losses. The estimated losses for ECHAM5 20C and reanalysis events show similar statistical features in terms of return periods. Under future climate conditions, all climate scenarios show an increase in both frequency and magnitude of potential losses caused by windstorms for Core Europe. Future losses that are double the highest ECHAM5 20C loss are identified for some countries. While positive changes of ranking are significant for many countries and multiple scenarios, significantly shorter RPs are mostly found under the A2 scenario for return levels correspondent to 20 yr losses or less. The emergence time of the statistically significant changes in loss varies from 2027 to 2100. These results imply an increased risk of occurrence of windstorm-associated losses, which can be largely attributed to changes in the meteorological severity of the events. Additionally, factors such as changes in the cyclone paths and in the location of the wind signatures relative to highly populated areas are also important to explain the changes in estimated losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precipitation indices are commonly used as climate change indicators. Considering four Climate Variability and Predictability-recommended indices, this study assesses possible changes in their spatial patterns over Portugal under future climatic conditions. Precipitation data from the regional climate model Consortium for Small-Scale Modelling–Climate version of the Local Model (CCLM) ensemble simulations with ECHAM5/MPI-OM1 boundary conditions are used for this purpose. For recent–past, medians and probability density functions of the CCLM-based indices are validated against station-based and gridded observational dataset from ENSEMBLES-based (gridded daily precipitation data provided by the European Climate Assessment & Dataset project) indices. It is demonstrated that the model is able to realistically reproduce not only precipitation but also the corresponding extreme indices. Climate change projections for 2071–2100 (A1B and B1 SRES scenarios) reveal significant decreases in total precipitation, particularly in autumn over northwestern and southern Portugal, though changes exhibit distinct local and seasonal patterns and are typically stronger for A1B than for B1. The increase in winter precipitation over northeastern Portugal in A1B is the most important exception to the overall drying trend. Contributions of extreme precipitation events to total precipitation are also expected to increase, mainly in winter and spring over northeastern Portugal. Strong projected increases in the dry spell lengths in autumn and spring are also noteworthy, giving evidence for an extension of the dry season from summer to spring and autumn. Although no coupling analysis is undertaken, these changes are qualitatively related to modifications in the large-scale circulation over the Euro-Atlantic area, more specifically to shifts in the position of the Azores High and associated changes in the large-scale pressure gradient over the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate is one of the main factors controlling winegrape production. Bioclimatic indices describing the suitability of a particular region for wine production are a widely used zoning tool. Seven suitable bioclimatic indices characterize regions in Europe with different viticultural suitability, and their possible geographical shifts under future climate conditions are addressed using regional climate model simulations. The indices are calculated from climatic variables (daily values of temperature and precipitation) obtained from transient ensemble simulations with the regional model COSMO-CLM. Index maps for recent decades (1960–2000) and for the 21st century (following the IPCC-SRES B1 and A1B scenarios) are compared. Results show that climate change is projected to have a significant effect on European viticultural geography. Detrimental impacts on winegrowing are predicted in southern Europe, mainly due to increased dryness and cumulative thermal effects during the growing season. These changes represent an important constraint to grapevine growth and development, making adaptation strategies crucial, such as changing varieties or introducing water supply by irrigation. Conversely, in western and central Europe, projected future changes will benefit not only wine quality, but might also demarcate new potential areas for viticulture, despite some likely threats associated with diseases. Regardless of the inherent uncertainties, this approach provides valuable information for implementing proper and diverse adaptation measures in different European regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the development of Greater Amman, Jordan noting that the vast urban expansion that has occurred over the last fifty years has led to the desertification of rare fertile lands, following the fragmented and scattered territorial expansion of the city. The future scenario for planning in Greater Amman is analyzed in respect of proposals outlined in the Metropolitan Growth Plan of 2008, which assumes a rapid population growth from 2,200,000 persons in 2006, to approximately 6,500,000 by 2025. The concentration of more than 39 per cent of the national population of Jordan in Greater Amman threatens the transformation of former distinct settlement pattern into a distinctive continuous urban zone, aggravating problems of infrastructural provision, water needs, agricultural lands, and leaving unresolved problems of land inflation, poor urban standards and housing shortages. In conclusion, the environmental implications of the Amman Metropolitan Growth Plan are analysed, and it is suggested that an alternative approach is needed, based on clear principles of sustainable urban development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scientific community is developing new global, regional, and sectoral scenarios to facilitate interdisciplinary research and assessment to explore the range of possible future climates and related physical changes that could pose risks to human and natural systems; how these changes could interact with social, economic, and environmental development pathways; the degree to which mitigation and adaptation policies can avoid and reduce risks; the costs and benefits of various policy mixes; residual impacts under alternative pathways; and the relationship of future climate change and adaptation and mitigation policy responses with sustainable development. This paper provides the background to and process of developing the conceptual framework for these scenarios, as described in the three subsequent papers in this Special Issue (Van Vuuren et al.; O’Neill et al.; Kriegler et al.). The paper also discusses research needs to further develop and apply this framework. A key goal of the current framework design and its future development is to facilitate the collaboration of climate change researchers from a broad range of perspectives and disciplines to develop policy- and decision-relevant scenarios and explore the challenges and opportunities human and natural systems could face with additional climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24%, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16%. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are a range of studies based in the low carbon arena which use various ‘futures’- based techniques as ways of exploring uncertainties. These techniques range from ‘scenarios’ and ‘roadmaps’ through to ‘transitions’ and ‘pathways’ as well as ‘vision’-based techniques. The overall aim of the paper is therefore to compare and contrast these techniques to develop a simple working typology with the further objective of identifying the implications of this analysis for RETROFIT 2050. Using recent examples of city-based and energy-based studies throughout, the paper compares and contrasts these techniques and finds that the distinctions between them have often been blurred in the field of low carbon. Visions, for example, have been used in both transition theory and futures/Foresight methods, and scenarios have also been used in transition-based studies as well as futures/Foresight studies. Moreover, Foresight techniques which capture expert knowledge and map existing knowledge to develop a set of scenarios and roadmaps which can inform the development of transitions and pathways can not only help potentially overcome any ‘disconnections’ that may exist between the social and the technical lenses in which such future trajectories are mapped, but also promote a strong ‘co-evolutionary’ content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth’s climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assess how effectively the current network of protected areas (PAs) across the Iberian Peninsula will conserve plant diversity under near-future (2020) climate change. We computed 3267 MAXENT environmental niche models (ENMs) at 1-km spatial resolution for known Iberian plant species under two climate scenarios (1950-2000 baseline & 2020). To predict near-future species distributions across the network of Iberian and Balearics PAs, we combined projections of species’ ENMs with simulations of propagule dispersal by using six scenarios of annual dispersal rates (no dispersal, 0.1 km, 0.5 km, 1 km, 2 km and unlimited). Mined PA grid cell values for each species were then analyzed. We forecast 3% overall floristic diversity richness loss by 2020. The habitat of regionally extant species will contract on average by 13.14%. Niche movement exceeds 1 km per annum for 30% of extant species. While the southerly range margin of northern plant species retracts northward at 8.9 km per decade, overall niche movement is more easterly and westerly than northerly. There is little expansion of the northern range margin of southern plant species even under unlimited dispersal. Regardless of propagule dispersal rate, altitudinal niche movement of +25 m per decade is strongest for northern species. Pyrenees flora is most vulnerable to near-future climate change with many northern plant species responding by shifting their range westerly and easterly rather than northerly. Northern humid habitats will be particularly vulnerable to near-future climate change. Andalusian National Parks will become important southern biodiversity refuges. With limited human intervention (particularly in the Pyrenees), we conclude that floristic diversity in Iberian PAs should withstand near-future climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More and more households are purchasing electric vehicles (EVs), and this will continue as we move towards a low carbon future. There are various projections as to the rate of EV uptake, but all predict an increase over the next ten years. Charging these EVs will produce one of the biggest loads on the low voltage network. To manage the network, we must not only take into account the number of EVs taken up, but where on the network they are charging, and at what time. To simulate the impact on the network from high, medium and low EV uptake (as outlined by the UK government), we present an agent-based model. We initialise the model to assign an EV to a household based on either random distribution or social influences - that is, a neighbour of an EV owner is more likely to also purchase an EV. Additionally, we examine the effect of peak behaviour on the network when charging is at day-time, night-time, or a mix of both. The model is implemented on a neighbourhood in south-east England using smart meter data (half hourly electricity readings) and real life charging patterns from an EV trial. Our results indicate that social influence can increase the peak demand on a local level (street or feeder), meaning that medium EV uptake can create higher peak demand than currently expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological change has often been presented as a readily accepted means by which long-term greenhouse gas (GHG) emission reductions can be achieved. Cities are the future centers of economic growth, with the global population becoming predominantly urban; hence, increases or reductions of GHG emissions are tied to their energy strategies. This research examines the likelihood of a developed world city (the Greater Toronto Area) achieving an 80% reduction in GHG emissions through policy-enabled technological change. Emissions are examined from 3 major sources: light duty passenger vehicles, residential buildings and commercial/institutional buildings. Logistic diffusion curves are applied for the adoption of alternative vehicle technologies, building retrofits and high performance new building construction. This research devises high, low and business-as-usual estimates of future technological adoption and finds that even aggressive scenarios are not sufficient to achieve an 80% reduction in GHG emissions by 2050. This further highlights the challenges faced in maintaining a relatively stable climate. Urban policy makers must consider that the longer the lag before this transition occurs, the greater the share of GHG emissions mitigation that must addressed through behavioural change in order to meet the 2050 target, which likely poses greater political challenges.