112 resultados para Frozen ground
Resumo:
When two people discuss something they can see in front of them, what is the relationship between their eye movements? We recorded the gaze of pairs of subjects engaged in live, spontaneous dialogue. Cross-recurrence analysis revealed a coupling between the eye movements of the two conversants. In the first study, we found their eye movements were coupled across several seconds. In the second, we found that this coupling increased if they both heard the same background information prior to their conversation. These results provide a direct quantification of joint attention during unscripted conversation and show that it is influenced by knowledge in the common ground.
Resumo:
In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.
Gabor wavelets and Gaussian models to separate ground and non-ground for airborne scanned LIDAR data
Resumo:
The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.
Resumo:
We have conducted the first extensive field test of two new methods to retrieve optical properties for overhead clouds that range from patchy to overcast. The methods use measurements of zenith radiance at 673 and 870 nm wavelengths and require the presence of green vegetation in the surrounding area. The test was conducted at the Atmospheric Radiation Measurement Program Oklahoma site during September–November 2004. These methods work because at 673 nm (red) and 870 nm (near infrared (NIR)), clouds have nearly identical optical properties, while vegetated surfaces reflect quite differently. The first method, dubbed REDvsNIR, retrieves not only cloud optical depth τ but also radiative cloud fraction. Because of the 1-s time resolution of our radiance measurements, we are able for the first time to capture changes in cloud optical properties at the natural timescale of cloud evolution. We compared values of τ retrieved by REDvsNIR to those retrieved from downward shortwave fluxes and from microwave brightness temperatures. The flux method generally underestimates τ relative to the REDvsNIR method. Even for overcast but inhomogeneous clouds, differences between REDvsNIR and the flux method can be as large as 50%. In addition, REDvsNIR agreed to better than 15% with the microwave method for both overcast and broken clouds. The second method, dubbed COUPLED, retrieves τ by combining zenith radiances with fluxes. While extra information from fluxes was expected to improve retrievals, this is not always the case. In general, however, the COUPLED and REDvsNIR methods retrieve τ to within 15% of each other.
Resumo:
This paper presents the results of the crowd image analysis challenge of the PETS2010 workshop. The evaluation was carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The PETS 2010 evaluation was performed using new ground truthing create from each independant two dimensional view. In addition, the performance of the submissions to the PETS 2009 and Winter-PETS 2009 were evaluated and included in the results. The evaluation highlights the detection and tracking performance of the authors’ systems in areas such as precision, accuracy and robustness.
Resumo:
Normally wind measurements from Doppler radars rely on the presence of rain. During fine weather, insects become a potential radar target for wind measurement. However, it is difficult to separate ground clutter and insect echoes when spectral or polarimetric methods are not available. Archived reflectivity and velocity data from repeated scans provide alternative methods. The probability of detection (POD) method, which maps areas with a persistent signal as ground clutter, is ineffective when most scans also contain persistent insect echoes. We developed a clutter detection method which maps the standard deviation of velocity (SDV) over a large number of scans, and can differentiate insects and ground clutter close to the radar. Beyond the range of persistent insect echoes, the POD method more thoroughly removes ground clutter. A new, pseudo-probability clutter map was created by combining the POD and SDV maps. The new map optimised ground clutter detection without removing insect echoes.
Resumo:
Results from both experimental measurements and 3D numerical simulations of Ground Source Heat Pump systems (GSHP) at a UK climate are presented. Experimental measurements of a horizontal-coupled slinky GSHP were undertaken in Talbot Cottage at Drayton St Leonard site, Oxfordshire, UK. The measured thermophysical properties of in situ soil were used in the CFD model. The thermal performance of slinky heat exchangers for the horizontal-coupled GSHP system for different coil diameters and slinky interval distances was investigated using a validated 3D model. Results from a two month period of monitoring the performance of the GSHP system showed that the COP decreased with the running time. The average COP of the horizontal-coupled GSHP was 2.5. The numerical prediction showed that there was no significant difference in the specific heat extraction of the slinky heat exchanger at different coil diameters. However, the larger the diameter of coil, the higher the heat extraction per meter length of soil. The specific heat extraction also increased, but the heat extraction per meter length of soil decreased with the increase of coil central interval distance.
Resumo:
Through increases in net primary production (NPP), elevated CO2 is hypothesizes to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE) experiment near Bangor, Wales, 4 ambient CO2 and 4 FACE plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. Four years after establishment, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by FACE. We observed a decrease of leaf N content in Betula and Alnus under FACE, while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by FACE. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated CO2 at this site.
Resumo:
An increasing importance is assigned to the estimation and verification of carbon stocks in forests. Forestry practice has several long-established and reliable methods for the assessment of aboveground biomass; however we still miss accurate predictors of belowground biomass. A major windthrow event exposing the coarse root systems of Norway spruce trees allowed us to assess the effects of contrasting soil stone and water content on belowground allocation. Increasing stone content decreases root/shoot ratio, while soil waterlogging leads to an increase in this ratio. We constructed allometric relationships for belowground biomass prediction and were able to show that only soil waterlogging significantly impacts model parameters. We showed that diameter at breast height is a reliable predictor of belowground biomass and, once site-specific parameters have been developed, it is possible to accurately estimate belowground biomass in Norway spruce.
Resumo:
Lightning data, collected using a Boltek Storm Tracker system installed at Chilton, UK, were used to investigate the mean response of the ionospheric sporadic-E layer to lightning strokes in a superposed epoch study. The lightning detector can discriminate between positive and negative lightning strokes and between cloud-to-ground ( CG) and inter-cloud ( IC) lightning. Superposed epoch studies carried out separately using these subsets of lightning strokes as trigger events have revealed that the dominant cause of the observed ionospheric enhancement in the Es layer is negative cloud-to-ground lightning.