92 resultados para Frontiers
Resumo:
The ability to create accurate geometric models of neuronal morphology is important for understanding the role of shape in information processing. Despite a significant amount of research on automating neuron reconstructions from image stacks obtained via microscopy, in practice most data are still collected manually. This paper describes Neuromantic, an open source system for three dimensional digital tracing of neurites. Neuromantic reconstructions are comparable in quality to those of existing commercial and freeware systems while balancing speed and accuracy of manual reconstruction. The combination of semi-automatic tracing, intuitive editing, and ability of visualizing large image stacks on standard computing platforms provides a versatile tool that can help address the reconstructions availability bottleneck. Practical considerations for reducing the computational time and space requirements of the extended algorithm are also discussed.
Resumo:
The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism.
Resumo:
Ketamine and propofol are two well-known, powerful anesthetic agents, yet at first sight this appears to be their only commonality. Ketamine is a dissociative anesthetic agent, whose main mechanism of action is considered to be N-methyl-D-aspartate (NMDA) antagonism; whereas propofol is a general anesthetic agent, which is assumed to primarily potentiate currents gated by γ-aminobutyric acid type A (GABAA) receptors. However, several experimental observations suggest a closer relationship. First, the effect of ketamine on the electroencephalogram (EEG) is markedly changed in the presence of propofol: on its own ketamine increases θ (4–8 Hz) and decreases α (8–13 Hz) oscillations, whereas ketamine induces a significant shift to beta band frequencies (13–30 Hz) in the presence of propofol. Second, both ketamine and propofol cause inhibition of the inward pacemaker current Ih, by binding to the corresponding hyperpolarization-activated cyclic nucleotide-gated potassium channel 1 (HCN1) subunit. The resulting effect is a hyperpolarization of the neuron’s resting membrane potential. Third, the ability of both ketamine and propofol to induce hypnosis is reduced in HCN1-knockout mice. Here we show that one can theoretically understand the observed spectral changes of the EEG based on HCN1-mediated hyperpolarizations alone, without involving the supposed main mechanisms of action of these drugs through NMDA and GABAA, respectively. On the basis of our successful EEG model we conclude that ketamine and propofol should be antagonistic to each other in their interaction at HCN1 subunits. Such a prediction is in accord with the results of clinical experiment in which it is found that ketamine and propofol interact in an infra-additive manner with respect to the endpoints of hypnosis and immobility.
Resumo:
Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.
Resumo:
Bottom-up processes can interrupt ongoing cognitive processing in order to adaptively respond to emotional stimuli of high potential significance, such as those that threaten wellbeing. However it is vital that this interference can be modulated in certain contexts to focus on current tasks. Deficits in the ability to maintain the appropriate balance between cognitive and emotional demands can severely impact on day-to-day activities. This fMRI study examined this interaction between threat processing and cognition; 18 adult participants performed a visuospatial working memory (WM) task with two load conditions, in the presence and absence of anxiety induction by threat of electric shock. Threat of shock interfered with performance in the low cognitive load condition; however interference was eradicated under high load, consistent with engagement of emotion regulation mechanisms. Under low load the amygdala showed significant activation to threat of shock that was modulated by high cognitive load. A directed top-down control contrast identified two regions associated with top-down control; ventrolateral PFC and dorsal ACC. Dynamic causal modeling provided further evidence that under high cognitive load, top-down inhibition is exerted on the amygdala and its outputs to prefrontal regions. Additionally, we hypothesized that individual differences in a separate, non-emotional top-down control task would predict the recruitment of dorsal ACC and ventrolateral PFC during top-down control of threat. Consistent with this, performance on a separate dichotic listening task predicted dorsal ACC and ventrolateral PFC activation during high WM load under threat of shock, though activation in these regions did not directly correlate with WM performance. Together, the findings suggest that under high cognitive load and threat, top-down control is exerted by dACC and vlPFC to inhibit threat processing, thus enabling WM performance without threat-related interference.
Resumo:
Clinical pathways have been adopted for various diseases in clinical departments for quality improvement as a result of standardization of medical activities in treatment process. Using knowledge-based decision support on the basis of clinical pathways is a promising strategy to improve medical quality effectively. However, the clinical pathway knowledge has not been fully integrated into treatment process and thus cannot provide comprehensive support to the actual work practice. Therefore this paper proposes a knowledgebased clinical pathway management method which contributes to make use of clinical knowledge to support and optimize medical practice. We have developed a knowledgebased clinical pathway management system to demonstrate how the clinical pathway knowledge comprehensively supports the treatment process. The experiences from the use of this system show that the treatment quality can be effectively improved by the extracted and classified clinical pathway knowledge, seamless integration of patient-specific clinical pathway recommendations with medical tasks and the evaluating pathway deviations for optimization.
Resumo:
Emotional reactivity and the time taken to recover, particularly from negative, stressful, events, are inextricably linked, and both are crucial for maintaining well-being. It is unclear, however, to what extent emotional reactivity during stimulus onset predicts the time course of recovery after stimulus offset. To address this question, 25 participants viewed arousing (negative and positive) and neutral pictures from the International Affective Picture System (IAPS) followed by task-relevant face targets, which were to be gender categorized. Faces were presented early (400–1500 ms) or late (2400–3500 ms) after picture offset to capture the time course of recovery from emotional stimuli. Measures of reaction time (RT), as well as face-locked N170 and P3 components were taken as indicators of the impact of lingering emotion on attentional facilitation or interference. Electrophysiological effects revealed negative and positive images to facilitate face-target processing on the P3 component, regardless of temporal interval. At the individual level, increased reactivity to: (1) negative pictures, quantified as the IAPS picture-locked Late Positive Potential (LPP), predicted larger attentional interference on the face-locked P3 component to faces presented in the late time window after picture offset. (2) Positive pictures, denoted by the LPP, predicted larger facilitation on the face-locked P3 component to faces presented in the earlier time window after picture offset. These results suggest that subsequent processing is still impacted up to 3500 ms after the offset of negative pictures and 1500 ms after the offset of positive pictures for individuals reacting more strongly to these pictures, respectively. Such findings emphasize the importance of individual differences in reactivity when predicting the temporality of emotional recovery. The current experimental model provides a novel basis for future research aiming to identify profiles of adaptive and maladaptive recovery.
Resumo:
An important constraint on how hemodynamic neuroimaging signals such as fMRI can be interpreted in terms of the underlying evoked activity is an understanding of neurovascular coupling mechanisms that actually generate hemodynamic responses. The predominant view at present is that the hemodynamic response is most correlated with synaptic input and subsequent neural processing rather than spiking output. It is still not clear whether input or processing is more important in the generation of hemodynamics responses. In order to investigate this we measured the hemodynamic and neural responses to electrical whisker pad stimuli in rat whisker barrel somatosensory cortex both before and after the local cortical injections of the GABAA agonist muscimol. Muscimol would not be expected to affect the thalamocortical input into the cortex but would inhibit subsequent intra-cortical processing. Pre-muscimol infusion whisker stimuli elicited the expected neural and accompanying hemodynamic responses to that reported previously. Following infusion of muscimol, although the temporal profile of neural responses to each pulse of the stimulus train was similar, the average response was reduced in magnitude by ∼79% compared to that elicited pre-infusion. The whisker-evoked hemodynamic responses were reduced by a commensurate magnitude suggesting that, although the neurovascular coupling relationships were similar for synaptic input as well as for cortical processing, the magnitude of the overall response is dominated by processing rather than from that produced from the thalamocortical input alone.
Resumo:
Perception and action are tightly linked: objects may be perceived not only in terms of visual features, but also in terms of possibilities for action. Previous studies showed that when a centrally located object has a salient graspable feature (e.g., a handle), it facilitates motor responses corresponding with the feature's position. However, such so-called affordance effects have been criticized as resulting from spatial compatibility effects, due to the visual asymmetry created by the graspable feature, irrespective of any affordances. In order to dissociate between affordance and spatial compatibility effects, we asked participants to perform a simple reaction-time task to typically graspable and non-graspable objects with similar visual features (e.g., lollipop and stop sign). Responses were measured using either electromyography (EMG) on proximal arm muscles during reaching-like movements, or with finger key-presses. In both EMG and button press measurements, participants responded faster when the object was either presented in the same location as the responding hand, or was affordable, resulting in significant and independent spatial compatibility and affordance effects, but no interaction. Furthermore, while the spatial compatibility effect was present from the earliest stages of movement preparation and throughout the different stages of movement execution, the affordance effect was restricted to the early stages of movement execution. Finally, we tested a small group of unilateral arm amputees using EMG, and found residual spatial compatibility but no affordance, suggesting that spatial compatibility effects do not necessarily rely on individuals’ available affordances. Our results show dissociation between affordance and spatial compatibility effects, and suggest that rather than evoking the specific motor action most suitable for interaction with the viewed object, graspable objects prompt the motor system in a general, body-part independent fashion
Resumo:
Choices not only reflect our preference, but they also affect our behavior. The phenomenon of choice-induced preference change has been of interest to cognitive dissonance researchers in social psychology, and more recently, it has attracted the attention of researchers in economics and neuroscience. Preference modulation after the mere act of making a choice has been repeatedly demonstrated over the last 50 years by an experimental paradigm called the “free-choice paradigm.” However, Chen and Risen (2010) pointed out a serious methodological flaw in this paradigm, arguing that evidence for choice-induced preference change is still insufficient. Despite the flaw, studies using the traditional free-choice paradigm continue to be published without addressing the criticism. Here, aiming to draw more attention to this issue, we briefly explain the methodological problem, and then describe simple simulation studies that illustrate how the free-choice paradigm produces a systematic pattern of preference change consistent with cognitive dissonance, even without any change in true preference. Our stimulation also shows how a different level of noise in each phase of the free-choice paradigm independently contributes to the magnitude of artificial preference change. Furthermore, we review ways of addressing the critique and provide a meta-analysis to show the effect size of choice-induced preference change after addressing the critique. Finally, we review and discuss, based on the results of the stimulation studies, how the criticism affects our interpretation of past findings generated from the free-choice paradigm. We conclude that the use of the conventional free-choice paradigm should be avoided in future research and the validity of past findings from studies using this paradigm should be empirically re-established. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)
Resumo:
Detection of a tactile stimulus on one finger is impaired when a concurrent stimulus (masker) is presented on an additional finger of the same or the opposite hand. This phenomenon is known to be finger-specific at the within-hand level. However, whether this specificity is also maintained at the between-hand level is not known. In four experiments, we addressed this issue by combining a Bayesian adaptive staircase procedure (QUEST) with a two-interval forced choice (2IFC) design in order to establish threshold for detecting 200ms, 100Hz sinusoidal vibrations applied to the index or little fingertip of either hand (targets). We systematically varied the masker finger (index, middle, ring, or little finger of either hand), while controlling the spatial location of the target and masker stimuli. Detection thresholds varied consistently as a function of the masker finger when the latter was on the same hand (Experiments 1 and 2), but not when on different hands (Experiments 3 and 4). Within the hand, detection thresholds increased for masker fingers closest to the target finger (i.e., middle>ring when the target was index). Between the hands, detection thresholds were higher only when the masker was present on any finger as compared to when the target was presented in isolation. The within hand effect of masker finger is consistent with the segregation of different fingers at the early stages of somatosensory processing, from the periphery to the primary somatosensory cortex (SI). We propose that detection is finger-specific and reflects the organisation of somatosensory receptive fields in SI within, but not between the hands.
Resumo:
To date, only one study has investigated educational attainment in poor (reading) comprehenders, providing evidence of poor performance on national UK school tests at age 11 years relative to peers (Cain & Oakhill, 2006). In the present study, we adopted a longitudinal approach, tracking attainment on such tests from 11 years to the end of compulsory schooling in the UK (age 16 years). We aimed to investigate the proposal that educational weaknesses (defined as poor performance on national assessments) might become more pronounced over time, as the curriculum places increasing demands on reading comprehension. Participants comprised 15 poor comprehenders and 15 controls; groups were matched for chronological age, nonverbal reasoning ability and decoding skill. Children were identified at age 9 years using standardised measures of nonverbal reasoning, decoding and reading comprehension. These measures, along with a measure of oral vocabulary knowledge, were repeated at age 11 years. Data on educational attainment were collected from all participants (N = 30) at age 11 and from a subgroup (n = 21) at 16 years. Compared to controls, educational attainment in poor comprehenders was lower at ages 11 and 16 years, an effect that was significant at 11 years. When poor comprehenders were compared to national performance levels, they showed significantly lower performance at both time points. Low educational attainment was not evident for all poor comprehenders. Nonetheless, our findings point to a link between reading comprehension difficulties in mid to late childhood and poor educational outcomes at ages 11 and 16 years. At these ages, pupils in the UK are making key transitions: they move from primary to secondary schools at 11, and out of compulsory schooling at 16.
Resumo:
Drawing on Pierre Bourdieu's notion of regionalist discourse as the performative legitimation of specific frontiers, this article examines how the English traveller Samuel Jackson Pratt mediated a picture of the Welsh to late eighteenth-century readers in his Gleanings Through Wales, Holland and Westphalia (1795). This process of mediation was further complicated by the translation of this work into German as the Aehrenlese auf einer Reise durch Wallis, which appeared with the Leipzig publisher Lincke in 1798. While this work made an important contribution to German Celtophilia in the Romantic period, the German translator was careful to omit its more Sternean passages, in favour of factual narrative. Pratt's account of his travel through Wales, mediated in turn to a German audience through its Leipzig translator, therefore embodies several layers of cultural transfer that generate a complex and multifaceted image of Wales at the close of the eighteenth century.