112 resultados para Forest disturbance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have suggested that collecting psychiatric data on relatives in family studies by asking probands to provide information on them leads to a bias in estimates of morbidity risk, because probands' accounts are influenced by their own psychiatric histories. We investigated this in a UK sample and found that daughters' anxiety disorder histories did not influence their reports of anxiety disorder in mothers, but their history of mood disorder/alcohol dependence made them more sensitive in predicting mood disorder/alcohol dependence in mothers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As Terabyte datasets become the norm, the focus has shifted away from our ability to produce and store ever larger amounts of data, onto its utilization. It is becoming increasingly difficult to gain meaningful insights into the data produced. Also many forms of the data we are currently producing cannot easily fit into traditional visualization methods. This paper presents a new and novel visualization technique based on the concept of a Data Forest. Our Data Forest has been designed to be used with vir tual reality (VR) as its presentation method. VR is a natural medium for investigating large datasets. Our approach can easily be adapted to be used in a variety of different ways, from a stand alone single user environment to large multi-user collaborative environments. A test application is presented using multi-dimensional data to demonstrate the concepts involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As we increase our ability to produce and store ever larger amounts of data, it is becoming increasingly difficult to understand what the data is trying to tell us. Not all the data we are currently producing can easily fit into traditional visualization methods. This paper presents a new and novel visualization technique based on the concept of a Data Forest. Our Data Forest has been developed to be utilised by virtual reality (VR) systems. VR is a natural information medium. This approach can easily be adapted to be used in collaborative environments. A test application has been developed to demonstrate the concepts involved and a collaborative version tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine roots play an important part in forest carbon, nutrient and water cycles. The turnover of fine roots constitutes a major carbon input to soils. Estimation of fine root turnover is difficult, labour intensive and is often compounded by artefacts created by soil disturbance. In this work, an alternative approach of using inclusion nets installed in an undisturbed soil profile was used to measure fine root production and was compared to the in-growth core method. There was no difference between fine root production estimated by the two methods in three southern taiga sites with contrasting soil conditions and tree species composition in the Central Forest State Biosphere Reserve, Russia. Expressed as annual production over standing biomass, Norway spruce fine root turnover was in the region of 0.10 to 0.24 y-1. The inclusion net technique is suitable for field based assessment of fine root production. There are several advantages over the in-growth core method, due to non-disturbance of the soil profile and its potential for very high rate of replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0 to 10 years old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height were first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, but also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age specific parameters of biomass allocation patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to climate change predictions, water availability might change dramatically in Europe and adjacent regions. This change will undoubtedly have an adverse effect on existing tree species and affect their ability to cope with a lack or an excess of water, changes in annual precipitation patterns, soil salinity and fire disturbance. The following chapter will describe tree species and proven-ances used in European forestry practice which are the most suitable to deal with water stress, salinity and fire. Each subchapter starts with a brief description of each of the stress factors and discusses the predictions of the likelihood of their occurrence in the near future according to the climate change scenarios. Tree spe-cies and their genotypes able to cope with particular stress factor, together with indication of their use by forest managers are then introduced in greater detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The likely Reducing Emissions from Deforestation and Degradation (REDD+) mechanism includes strategies for the enhancement of forest carbon stocks. Recent concerns have been expressed that such enhancement, or restoration, of forest carbon could be counterproductive to biodiversity conservation, because forests are managed as “carbon farms” with the application of intensive silvicultural management that could homogenize diverse degraded rainforests. Restoration increases regeneration rates in degraded forest compared to naturally regenerating forest, and thus could yield significant financial returns for carbon sequestered. Here, we argue that such forest restoration projects are, in fact, likely to provide a number of benefits to biodiversity conservation including the retention of biodiversity, the prevention of forest conversion to agriculture, and employment opportunities for poor local communities. As with other forms of forest-based carbon offsets, there are possible moral hazard and leakage problems with restoration. However, due to the multiple benefits, we urge that enhancement of forest carbon stocks be detailed as a major component in the future negotiations of REDD+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine roots constitute an interface between plants and soils and thus play a crucial part in forest carbon, nutrient and water cycles. Their continuous growth and dieback, often termed turnover of fine roots, may constitute a major carbon input to soils and significantly contribute to belowground carbon cycle. For this reason, it is of importance to accurately estimate not only the standing biomass of fine roots, but also its rate of turnover. To date, no direct and reliable method of measuring fine root turnover exists. The main reason for this is that the two component processes of root turnover, namely growth and dieback of fine roots, nearly always happen in the same place and at the same time. Further, the estimation of fine root turnover is complicated by the inaccessibility of tree root systems, its labour intensiveness and is often compounded by artefacts created by soil disturbance. Despite the fact that the elucidation of the patterns and controls of forest fine root turnover is of utmost importance for the development of realistic carbon cycle models, our knowledge of the contribution of fine root turnover to carbon and nutrient cycles in forests remains uncertain. This chapter will detail all major methods currently used for estimating fine root turnover and highlight their advantages, as well as drawbacks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Taita Apalis Apalis fuscigularis (IUCN category: Critically Endangered) is a species endemic to south-eastern Kenya. We assessed population size and habitat use in the three forest sites in which it is known to occur (Ngangao, Chawia and Vuria, totalling 257 ha). The estimate of total population size, derived from distance sampling at 412 sample points, ranged from 310 to 654 individuals, with the northern section of Ngangao fragment having 10-fold higher densities than Chawia (2.47-4.93 versus 0.22-0.41 birds ha(-1)). Ngangao north alone hosted 50% of the global population of the species. The highly degraded Vuria fragment also had moderately high densities (1.63-3.72 birds ha(-1)) suggesting that the species tolerates some human disturbance. Taita Apalis prefers vegetation with abundant climbers, but the predictive power of habitat use models was low, suggesting that habitat structure is not a primary cause for the low density of the species in Chawia. Protecting the subpopulation in the northern section of Ngangao is a priority, as is identifying factors responsible of the low abundance in Chawia, because ameliorating conditions in this large fragment could substantially increase the population of Taita Apalis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest soils account for a large part of the stable carbon pool held in terrestrial ecosystems. Future levels of atmospheric CO2 are likely to increase C input into the soils through increased above- and below-ground production of forests. This increased input will result in greater sequestration of C only if the additional C enters stable pools. In this review, we compare current observations from four large-scale Free Air FACE Enrichment (FACE) experiments on forest ecosystems (EuroFACE, Aspen-FACE, Duke FACE and ORNL-FACE) and consider their predictive power for long-term C sequestration. At all sites, FACE increased fine root biomass, and in most cases higher fine root turnover resulted in higher C input into soil via root necromass. However, at all sites, soil CO2 efflux also increased in excess of the increased root necromass inputs. A mass balance calculation suggests that a large part of the stimulation of soil CO2 efflux may be due to increased root respiration. Given the duration of these experiments compared with the life cycle of a forest and the complexity of processes involved, it is not yet possible to predict whether elevated CO2 will result in increased C storage in forest soil.