61 resultados para First Baptist Church of Charlotte, North Carolina.
Resumo:
The consistency of ensemble forecasts from three global medium-range prediction systems with the observed transition behaviour of a three-cluster model of the North Atlantic eddy-driven jet is examined. The three clusters consist of a mid jet cluster taken to represent an undisturbed jet and south and north jet clusters representing southward and northward shifts of the jet. The ensemble forecasts span a period of three extended winters (October–February) from October 2007–February 2010. The mean probabilities of transitions between the clusters calculated from the ensemble forecasts are compared with those calculated from a 23-extended-winter climatology taken from the European Centre for Medium-Range Weather Forecasts 40-Year Re-analysis (ERA40) dataset. No evidence of a drift with increasing lead time of the ensemble forecast transition probabilities towards values inconsistent with the 23-extended-winter climatology is found. The ensemble forecasts of transition probabilities are found to have positive Brier Skill at 15 day lead times. It is found that for the three-extended-winter forecast set, probabilistic forecasts initialized in the north jet cluster are generally less skilful than those initialized in the other clusters. This is consistent with the shorter persistence time-scale of the north jet cluster observed in the ERA40 23-extended-winter climatology. Copyright © 2011 Royal Meteorological Society
Resumo:
In the mid-1990s the subpolar gyre of the North Atlantic underwent a remarkable rapid warming, with sea surface temperatures increasing by around 1C in just 2 years. This rapid warming followed a prolonged positive phase of the North Atlantic Oscillation (NAO), but also coincided with an unusually negative NAO index in the winter of 1995/96. By comparing ocean analyses and carefully designed model experiments we show that this rapid warming can be understood as a delayed response to the prolonged positive phase of the NAO, and not simply an instantaneous response to the negative NAO index of 1995/96. Furthermore, we infer that the warming was partly caused by a surge, and subsequent decline, in the Meridional Overturning Circulation and northward heat transport of the Atlantic Ocean. Our results provide persuasive evidence of significant oceanic memory on multi-annual timescales, and are therefore encouraging for the prospects of developing skillful predictions.
Resumo:
The impact of North Atlantic SST patterns on the storm track is investigated using a hierarchy of GCM simulations using idealized (aquaplanet) and “semirealistic” boundary conditions in the atmospheric component (HadAM3) of the third climate configuration of the Met Office Unified Model (HadCM3). This framework enables the mechanisms determining the tropospheric response to North Atlantic SST patterns to be examined, both in isolation and in combination with continental-scale landmasses and orography. In isolation, a “Gulf Stream” SST pattern acts to strengthen the downstream storm track while a “North Atlantic Drift” SST pattern weakens it. These changes are consistent with changes in the extratropical SST gradient and near-surface baroclinicity, and each storm-track response is associated with a consistent change in the tropospheric jet structure. Locally enhanced near-surface horizontal wind convergence is found over the warm side of strengthened SST gradients associated with ascending air and increased precipitation, consistent with previous studies. When the combined SST pattern is introduced into the semirealistic framework (including the “North American” continent and the “Rocky Mountains”), the results suggest that the topographically generated southwest–northeast tilt in the North Atlantic storm track is enhanced. In particular, the Gulf Stream shifts the storm track south in the western Atlantic whereas the strong high-latitude SST gradient in the northeastern Atlantic enhances the storm track there.
Resumo:
In 2003 the European Commission started using Impact Assessment (IA) as the main empirical basis for its major policy proposals. The aim was to systematically assess ex ante the economic, social and environmental impacts of EU policy proposals. In parallel, research proliferated in search for theoretical grounds for IAs and in an attempt to evaluate empirically the performance of the first sets of IAs produced by the European Commission. This paper combines conceptual and evaluative studies carried out in the first five years of EU IAs. It concludes that the great discrepancy between rationale and practice calls for a different theoretical focus and a higher emphasis on evaluating empirically crucial risk economics aspects of IAs, such as the value of statistical life, price of carbon, the integration of macroeconomic modelling and scenario analysis.
Resumo:
A poleward shift of the mid-latitude storm tracks in response to anthropogenic greenhouse-gas forcing has been diagnosed in climate model simulations1, 2. Explanations of this effect have focused on atmospheric dynamics3, 4, 5, 6, 7. However, in contrast to storm tracks in other regions, the North Atlantic storm track responds by strengthening and extending farther east, in particular on its southern flank8. These adjustments are associated with an intensification and extension of the eddy-driven jet towards western Europe9 and are expected to have considerable societal impacts related to a rise in storminess in Europe10, 11, 12. Here, we apply a regression analysis to an ensemble of coupled climate model simulations to show that the coupling between ocean and atmosphere shapes the distinct storm-track response to greenhouse-gas forcing in the North Atlantic region. In the ensemble of simulations we analyse, at least half of the differences between the storm-track responses of different models are associated with uncertainties in ocean circulation changes. We compare the fully coupled simulations with both the associated slab model simulations and an ocean-forced experiment with one climate model to establish causality. We conclude that uncertainties in the response of the North Atlantic storm track to anthropogenic emissions could be reduced through tighter constraints on the future ocean circulation.
Resumo:
The names Opuntia bulbispina, O. clavata, O. emoryi and O. grahamii, originally proposed by George Engelmann between 1848 and 1856, are reviewed and typified after new findings of previously unknown voucher specimens. Original materials collected by some of the collaborators employed by Engelmann during the Mexican Boundary Survey were discovered in a loan from the Torrey Herbarium at the New York Botanical Garden (NY). Many of the materials include fragments of stems and fruits, and others include only sectioned flowers and some seeds. Particularly good descriptions of the species here concerned were published in Engelmann’s “Synopsis of the Cactaceae” in 1857, and exceptional illustrations were produced by Paulus Roetter and printed in “Cactaceae of the Boundary” in 1859. The problems surrounding some previous typifications of these names range from typification of joint lectotypes to illegitimate typifications of illustrations when original material was known to exist. The materials selected for typification were collected by the Mexican Boundary Survey and are lodged at the herbaria of the Missouri Botanical Garden (MO) and the New York Botanical Garden (NY); some are illustrations published by Engelmann.
Resumo:
In the mid 1990s the North Atlantic subpolar gyre (SPG) warmed rapidly, with sea surface temperatures (SST) increasing by 1°C in just a few years. By examining initialized hindcasts made with the UK Met Office Decadal Prediction System (DePreSys), it is shown that the warming could have been predicted. Conversely, hindcasts that only consider changes in radiative forcings are not able to capture the rapid warming. Heat budget analysis shows that the success of the DePreSys hindcasts is due to the initialization of anomalously strong northward ocean heat transport. Furthermore, it is found that initializing a strong Atlantic circulation, and in particular a strong Atlantic Meridional Overturning Circulation, is key for successful predictions. Finally, we show that DePreSys is able to predict significant changes in SST and other surface climate variables related to the North Atlantic warming.
Resumo:
Although Nazareth has usually been seen by scholars as a relatively minor Byzantine pilgrimage centre, it contained perhaps the most important ‘lost’ Byzantine church in the Holy Land, the Church of the Nutrition ‐ according to De Locis Sanctis built over the house where it was believed that Jesus Christ had been a child. This article, part of a series of final interim reports of the PEF-funded ‘Nazareth Archaeological Project’, presents evidence that this church has been discovered at the present Sisters of Nazareth convent in central Nazareth. The scale of the church and its surrounding structures suggests that Nazareth was a much larger, and more important, centre for Byzantine-period pilgrimage than previously supposed. The church was used in the Crusader period, after a phase of desertion, prior to destruction by fire, probably in the 13th century.
Resumo:
The North Atlantic eddy-driven jet is a major component of the large-scale flow in the northern hemisphere. Here we present evidence from reanalysis and ensemble forecast data for systematic flow-dependent predictability of the jet during northern hemisphere winter (DJF). It is found that when the jet is weakened or split it is both less persistent and less predictable. The lack of predictability manifests itself as the onset of an anomalously large instantaneous rate of spread of ensemble forecast members as the jet becomes weakened. This suggests that as the jet weakens or splits it enters into a state more sensitive to small differences between ensemble forecast members, rather like the sensitive region between the wings of the Lorenz attractor.