40 resultados para Finite element model
Resumo:
The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea-ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea-Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6-hourly NCEP reanalyses 1 (1.875° x 1.875°), 6-hourly NCEP reanalyses 2 (1.875° x 1.875°), 6-hourly analyses from the GME (Global Model of the German Weather Service) (0.5° x 0.5°) and high-resolution hourly COSMO (Consortium for Small-Scale Modeling) data (5 km x 5 km). In all FESOM simulations, except for those with 6-hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast-ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea-ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.
Resumo:
The flow dynamics of crystal-rich high-viscosity magma is likely to be strongly influenced by viscous and latent heat release. Viscous heating is observed to play an important role in the dynamics of fluids with temperature-dependent viscosities. The growth of microlite crystals and the accompanying release of latent heat should play a similar role in raising fluid temperatures. Earlier models of viscous heating in magmas have shown the potential for unstable (thermal runaway) flow as described by a Gruntfest number, using an Arrhenius temperature dependence for the viscosity, but have not considered crystal growth or latent heating. We present a theoretical model for magma flow in an axisymmetric conduit and consider both heating effects using Finite Element Method techniques. We consider a constant mass flux in a 1-D infinitesimal conduit segment with isothermal and adiabatic boundary conditions and Newtonian and non-Newtonian magma flow properties. We find that the growth of crystals acts to stabilize the flow field and make the magma less likely to experience a thermal runaway. The additional heating influences crystal growth and can counteract supercooling from degassing-induced crystallization and drive the residual melt composition back towards the liquidus temperature. We illustrate the models with results generated using parameters appropriate for the andesite lava dome-forming eruption at Soufriere Hills Volcano, Montserrat. These results emphasize the radial variability of the magma. Both viscous and latent heating effects are shown to be capable of playing a significant role in the eruption dynamics of Soufriere Hills Volcano. Latent heating is a factor in the top two kilometres of the conduit and may be responsible for relatively short-term (days) transients. Viscous heating is less restricted spatially, but because thermal runaway requires periods of hundreds of days to be achieved, the process is likely to be interrupted. Our models show that thermal evolution of the conduit walls could lead to an increase in the effective diameter of flow and an increase in flux at constant magma pressure.
Resumo:
In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.
Resumo:
The and RT0 finite element schemes are among the most promising low order elements for use in unstructured mesh marine and lake models. They are both free of spurious elevation modes, have good dispersive properties and have a relatively low computational cost. In this paper, we derive both finite element schemes in the same unified framework and discuss their respective qualities in terms of conservation, consistency, propagation factor and convergence rate. We also highlight the impact that the local variables placement can have on the model solution. The main conclusion that we can draw is that the choice between elements is highly application dependent. We suggest that the element is better suited to purely hydrodynamical applications while the RT0 element might perform better for hydrological applications that require scalar transport calculations.
Resumo:
A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.
Resumo:
A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Airborne scanning laser altimetry (LiDAR) is an important new data source for river flood modelling. LiDAR can give dense and accurate DTMs of floodplains for use as model bathymetry. Spatial resolutions of 0.5m or less are possible, with a height accuracy of 0.15m. LiDAR gives a Digital Surface Model (DSM), so vegetation removal software (e.g. TERRASCAN) must be used to obtain a DTM. An example used to illustrate the current state of the art will be the LiDAR data provided by the EA, which has been processed by their in-house software to convert the raw data to a ground DTM and separate vegetation height map. Their method distinguishes trees from buildings on the basis of object size. EA data products include the DTM with or without buildings removed, a vegetation height map, a DTM with bridges removed, etc. Most vegetation removal software ignores short vegetation less than say 1m high. We have attempted to extend vegetation height measurement to short vegetation using local height texture. Typically most of a floodplain may be covered in such vegetation. The idea is to assign friction coefficients depending on local vegetation height, so that friction is spatially varying. This obviates the need to calibrate a global floodplain friction coefficient. It’s not clear at present if the method is useful, but it’s worth testing further. The LiDAR DTM is usually determined by looking for local minima in the raw data, then interpolating between these to form a space-filling height surface. This is a low pass filtering operation, in which objects of high spatial frequency such as buildings, river embankments and walls may be incorrectly classed as vegetation. The problem is particularly acute in urban areas. A solution may be to apply pattern recognition techniques to LiDAR height data fused with other data types such as LiDAR intensity or multispectral CASI data. We are attempting to use digital map data (Mastermap structured topography data) to help to distinguish buildings from trees, and roads from areas of short vegetation. The problems involved in doing this will be discussed. A related problem of how best to merge historic river cross-section data with a LiDAR DTM will also be considered. LiDAR data may also be used to help generate a finite element mesh. In rural area we have decomposed a floodplain mesh according to taller vegetation features such as hedges and trees, so that e.g. hedge elements can be assigned higher friction coefficients than those in adjacent fields. We are attempting to extend this approach to urban area, so that the mesh is decomposed in the vicinity of buildings, roads, etc as well as trees and hedges. A dominant points algorithm is used to identify points of high curvature on a building or road, which act as initial nodes in the meshing process. A difficulty is that the resulting mesh may contain a very large number of nodes. However, the mesh generated may be useful to allow a high resolution FE model to act as a benchmark for a more practical lower resolution model. A further problem discussed will be how best to exploit data redundancy due to the high resolution of the LiDAR compared to that of a typical flood model. Problems occur if features have dimensions smaller than the model cell size e.g. for a 5m-wide embankment within a raster grid model with 15m cell size, the maximum height of the embankment locally could be assigned to each cell covering the embankment. But how could a 5m-wide ditch be represented? Again, this redundancy has been exploited to improve wetting/drying algorithms using the sub-grid-scale LiDAR heights within finite elements at the waterline.
Resumo:
Two ongoing projects at ESSC that involve the development of new techniques for extracting information from airborne LiDAR data and combining this information with environmental models will be discussed. The first project in conjunction with Bristol University is aiming to improve 2-D river flood flow models by using remote sensing to provide distributed data for model calibration and validation. Airborne LiDAR can provide such models with a dense and accurate floodplain topography together with vegetation heights for parameterisation of model friction. The vegetation height data can be used to specify a friction factor at each node of a model’s finite element mesh. A LiDAR range image segmenter has been developed which converts a LiDAR image into separate raster maps of surface topography and vegetation height for use in the model. Satellite and airborne SAR data have been used to measure flood extent remotely in order to validate the modelled flood extent. Methods have also been developed for improving the models by decomposing the model’s finite element mesh to reflect floodplain features such as hedges and trees having different frictional properties to their surroundings. Originally developed for rural floodplains, the segmenter is currently being extended to provide DEMs and friction parameter maps for urban floods, by fusing the LiDAR data with digital map data. The second project is concerned with the extraction of tidal channel networks from LiDAR. These networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt-marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. A semi-automatic technique has been developed to extract networks from LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low level algorithms first extract channel fragments based mainly on image properties then a high level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism.
Resumo:
Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufrière Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core–talus model simulates many of the observed growth characteristics of the 2005–2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.
Resumo:
During many lava dome-forming eruptions, persistent rockfalls and the concurrent development of a substantial talus apron around the foot of the dome are important aspects of the observed activity. An improved understanding of internal dome structure, including the shape and internal boundaries of the talus apron, is critical for determining when a lava dome is poised for a major collapse and how this collapse might ensue. We consider a period of lava dome growth at the Soufrière Hills Volcano, Montserrat, from August 2005 to May 2006, during which a 100 × 106 m3 lava dome developed that culminated in a major dome-collapse event on 20 May 2006. We use an axi-symmetrical Finite Element Method model to simulate the growth and evolution of the lava dome, including the development of the talus apron. We first test the generic behaviour of this continuum model, which has core lava and carapace/talus components. Our model describes the generation rate of talus, including its spatial and temporal variation, as well as its post-generation deformation, which is important for an improved understanding of the internal configuration and structure of the dome. We then use our model to simulate the 2005 to 2006 Soufrière Hills dome growth using measured dome volumes and extrusion rates to drive the model and generate the evolving configuration of the dome core and carapace/talus domains. The evolution of the model is compared with the observed rockfall seismicity using event counts and seismic energy parameters, which are used here as a measure of rockfall intensity and hence a first-order proxy for volumes. The range of model-derived volume increments of talus aggraded to the talus slope per recorded rockfall event, approximately 3 × 103–13 × 103 m3 per rockfall, is high with respect to estimates based on observed events. From this, it is inferred that some of the volumetric growth of the talus apron (perhaps up to 60–70%) might have occurred in the form of aseismic deformation of the talus, forced by an internal, laterally spreading core. Talus apron growth by this mechanism has not previously been identified, and this suggests that the core, hosting hot gas-rich lava, could have a greater lateral extent than previously considered.