41 resultados para Feature Descriptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the development of multi-feature classification techniques used to identify tremor-related characteristics in the Parkinsonian patient. Local field potentials were recorded from the subthalamic nucleus and the globus pallidus internus of eight Parkinsonian patients through the implanted electrodes of a Deep brain stimulation (DBS) device prior to device internalization. A range of signal processing techniques were evaluated with respect to their tremor detection capability and used as inputs in a multi-feature neural network classifier to identify the activity of Parkinsonian tremor. The results of this study show that a trained multi-feature neural network is able, under certain conditions, to achieve excellent detection accuracy on patients unseen during training. Overall the tremor detection accuracy was mixed, although an accuracy of over 86% was achieved in four out of the eight patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Feature usage is a pre-requisite to realising the benefits of investments in feature rich systems. We propose that conceptualising the dependent variable 'system use' as 'level of use' and specifying it as a formative construct has greater value for measuring the post-adoption use of feature rich systems. We then validate the content of the construct as a first step in developing a research instrument to measure it. The context of our study is the post-adoption use of electronic medical records (EMR) by primary care physicians. Method. Initially, a literature review of the empirical context defines the scope based on prior studies. Having identified core features from the literature, they are further refined with the help of experts in a consensus seeking process that follows the Delphi technique. Results.The methodology was successfully applied to EMRs, which were selected as an example of feature rich systems. A review of EMR usage and regulatory standards provided the feature input for the first round of the Delphi process. A panel of experts then reached consensus after four rounds, identifying ten task-based features that would be indicators of level of use. Conclusions. To study why some users deploy more advanced features than others, theories of post-adoption require a rich formative dependent variable that measures level of use. We have demonstrated that a context sensitive literature review followed by refinement through a consensus seeking process is a suitable methodology to validate the content of this dependent variable. This is the first step of instrument development prior to statistical confirmation with a larger sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable effort is presently being devoted to producing high-resolution sea surface temperature (SST) analyses with a goal of spatial grid resolutions as low as 1 km. Because grid resolution is not the same as feature resolution, a method is needed to objectively determine the resolution capability and accuracy of SST analysis products. Ocean model SST fields are used in this study as simulated “true” SST data and subsampled based on actual infrared and microwave satellite data coverage. The subsampled data are used to simulate sampling errors due to missing data. Two different SST analyses are considered and run using both the full and the subsampled model SST fields, with and without additional noise. The results are compared as a function of spatial scales of variability using wavenumber auto- and cross-spectral analysis. The spectral variance at high wavenumbers (smallest wavelengths) is shown to be attenuated relative to the true SST because of smoothing that is inherent to both analysis procedures. Comparisons of the two analyses (both having grid sizes of roughly ) show important differences. One analysis tends to reproduce small-scale features more accurately when the high-resolution data coverage is good but produces more spurious small-scale noise when the high-resolution data coverage is poor. Analysis procedures can thus generate small-scale features with and without data, but the small-scale features in an SST analysis may be just noise when high-resolution data are sparse. Users must therefore be skeptical of high-resolution SST products, especially in regions where high-resolution (~5 km) infrared satellite data are limited because of cloud cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies showed that features extracted from brain MRIs can well discriminate Alzheimer’s disease from Mild Cognitive Impairment. This study provides an algorithm that sequentially applies advanced feature selection methods for findings the best subset of features in terms of binary classification accuracy. The classifiers that provided the highest accuracies, have been then used for solving a multi-class problem by the one-versus-one strategy. Although several approaches based on Regions of Interest (ROIs) extraction exist, the prediction power of features has not yet investigated by comparing filter and wrapper techniques. The findings of this work suggest that (i) the IntraCranial Volume (ICV) normalization can lead to overfitting and worst the accuracy prediction of test set and (ii) the combined use of a Random Forest-based filter with a Support Vector Machines-based wrapper, improves accuracy of binary classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal with microscopic anisotropy shows a unique type of macroscopic isotropy restoration phenomenon that is absent in Euclidean space [M. T. Barlow et al., Phys. Rev. Lett. 75, 3042]. In this paper the isotropy restoration feature is considered for a family of two-dimensional Sierpinski gasket type fractal resistor networks. A parameter xi is introduced to describe this phenomenon. Our numerical results show that xi satisfies the scaling law xi similar to l(-alpha), where l is the system size and alpha is an exponent independent of the degree of microscopic anisotropy, characterizing the isotropy restoration feature of the fractal systems. By changing the underlying fractal structure towards the Euclidean triangular lattice through increasing the side length b of the gasket generators, the fractal-to-Euclidean crossover behavior of the isotropy restoration feature is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new approach to detect and track maritime objects in real time. The approach particularly addresses the highly dynamic maritime environment, panning cameras, target scale changes, and operates on both visible and thermal imagery. Object detection is based on agglomerative clustering of temporally stable features. Object extents are first determined based on persistence of detected features and their relative separation and motion attributes. An explicit cluster merging and splitting process handles object creation and separation. Stable object clus- ters are tracked frame-to-frame. The effectiveness of the approach is demonstrated on four challenging real-world public datasets.