80 resultados para Fault Tree
Resumo:
This paper addresses the need for accurate predictions on the fault inflow, i.e. the number of faults found in the consecutive project weeks, in highly iterative processes. In such processes, in contrast to waterfall-like processes, fault repair and development of new features run almost in parallel. Given accurate predictions on fault inflow, managers could dynamically re-allocate resources between these different tasks in a more adequate way. Furthermore, managers could react with process improvements when the expected fault inflow is higher than desired. This study suggests software reliability growth models (SRGMs) for predicting fault inflow. Originally developed for traditional processes, the performance of these models in highly iterative processes is investigated. Additionally, a simple linear model is developed and compared to the SRGMs. The paper provides results from applying these models on fault data from three different industrial projects. One of the key findings of this study is that some SRGMs are applicable for predicting fault inflow in highly iterative processes. Moreover, the results show that the simple linear model represents a valid alternative to the SRGMs, as it provides reasonably accurate predictions and performs better in many cases.
Resumo:
A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.
Resumo:
In this work a hybrid technique that includes probabilistic and optimization based methods is presented. The method is applied, both in simulation and by means of real-time experiments, to the heating unit of a Heating, Ventilation Air Conditioning (HVAC) system. It is shown that the addition of the probabilistic approach improves the fault diagnosis accuracy.
Resumo:
In this work, a fault-tolerant control scheme is applied to a air handling unit of a heating, ventilation and air-conditioning system. Using the multiple-model approach it is possible to identify faults and to control the system under faulty and normal conditions in an effective way. Using well known techniques to model and control the process, this work focuses on the importance of the cost function in the fault detection and its influence on the reconfigurable controller. Experimental results show how the control of the terminal unit is affected in the presence a fault, and how the recuperation and reconfiguration of the control action is able to deal with the effects of faults.
Resumo:
An n-dimensional Mobius cube, 0MQ(n) or 1MQ(n), is a variation of n-dimensional cube Q(n) which possesses many attractive properties such as significantly smaller communication delay and stronger graph-embedding capabilities. In some practical situations, the fault tolerance of a distributed memory multiprocessor system can be measured more precisely by the connectivity of the underlying graph under forbidden fault set models. This article addresses the connectivity of 0MQ(n)/1MQ(n), under two typical forbidden fault set models. We first prove that the connectivity of 0MQ(n)/1MQ(n) is 2n - 2 when the fault set does not contain the neighborhood of any vertex as a subset. We then prove that the connectivity of 0MQ(n)/1MQ(n) is 3n - 5 provided that the neighborhood of any vertex as well as that of any edge cannot fail simultaneously These results demonstrate that 0MQ(n)/1MQ(n) has the same connectivity as Q(n) under either of the previous assumptions.
Resumo:
Although tree nutrition has not been the primary focus of large climate change experiments on trees, we are beginning to understand its links to elevated atmospheric CO2 and temperature changes. This review focuses on the major nutrients, namely N and P, and deals with the effects of climate change on the processes that alter their cycling and availability. Current knowledge regarding biotic and abiotic agents of weathering, mobilization and immobilization of these elements will be discussed. To date, controlled environment studies have identified possible effects of climate change on tree nutrition. Only some of these findings, however, were verified in ecosystem scale experiments. Moreover, to be able to predict future effects of climate change on tree nutrition at this scale, we need to progress from studying effects of single factors to analysing interactions between factors such as elevated CO2, temperature or water availability.
Resumo:
Evidence is presented of widespread changes in structure and species composition between the 1980s and 2003–2004 from surveys of 249 British broadleaved woodlands. Structural components examined include canopy cover, vertical vegetation profiles, field-layer cover and deadwood abundance. Woods were located in 13 geographical localities and the patterns of change were examined for each locality as well as across all woods. Changes were not uniform throughout the localities; overall, there were significant decreases in canopy cover and increases in sub-canopy (2–10 m) cover. Changes in 0.5–2 m vegetation cover showed strong geographic patterns, increasing in western localities, but declining or showing no change in eastern localities. There were significant increases in canopy ash Fraxinus excelsior and decreases in oak Quercus robur/petraea. Shrub layer ash and honeysuckle Lonicera periclymenum increased while birch Betula spp. hawthorn Crataegus monogyna and hazel Corylus avellana declined. Within the field layer, both bracken Pteridium aquilinum and herbs increased. Overall, deadwood generally increased. Changes were consistent with reductions in active woodland management and changes in grazing and browsing pressure. These findings have important implications for sustainable active management of British broadleaved woodlands to meet silvicultural and biodiversity objectives.
Resumo:
Processor virtualization for process migration in distributed parallel computing systems has formed a significant component of research on load balancing. In contrast, the potential of processor virtualization for fault tolerance has been addressed minimally. The work reported in this paper is motivated towards extending concepts of processor virtualization towards ‘intelligent cores’ as a means to achieve fault tolerance in distributed parallel computing systems. Intelligent cores are an abstraction of the hardware processing cores, with the incorporation of cognitive capabilities, on which parallel tasks can be executed and migrated. When a processing core executing a task is predicted to fail the task being executed is proactively transferred onto another core. A parallel reduction algorithm incorporating concepts of intelligent cores is implemented on a computer cluster using Adaptive MPI and Charm ++. Preliminary results confirm the feasibility of the approach.
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator, and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts. However, the research does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely ‘Intelligent Agents’. In the approach considered a task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The agents hence contribute towards fault tolerance and towards building reliable systems. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.
Resumo:
The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.