62 resultados para Farmers, Part-time
Resumo:
The climatology of a stratosphere-resolving version of the Met Office’s climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations—the tropical “tape recorder”—is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasi-biennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small.
Resumo:
During June, July and August 2006 five aircraft took part in a campaign over West Africa to observe the aerosol content and chemical composition of the troposphere and lower stratosphere as part of the African Monsoon Multidisciplinary Analysis (AMMA) project. These are the first such measurements in this region during the monsoon period. In addition to providing an overview of the tropospheric composition, this paper provides a description of the measurement strategy (flights performed, instrumental payloads, wing-tip to wing-tip comparisons) and points to some of the important findings discussed in more detail in other papers in this special issue. The ozone data exhibits an "S" shaped vertical profile which appears to result from significant losses in the lower troposphere due to rapid deposition to forested areas and photochemical destruction in the moist monsoon air, and convective uplift of ozone-poor air to the upper troposphere. This profile is disturbed, particularly in the south of the region, by the intrusions in the lower and middle troposphere of air from the southern hemisphere impacted by biomass burning. Comparisons with longer term data sets suggest the impact of these intrusions on West Africa in 2006 was greater than in other recent wet seasons. There is evidence for net photochemical production of ozone in these biomass burning plumes as well as in urban plumes, in particular that from Lagos, convective outflow in the upper troposphere and in boundary layer air affected by nitrogen oxide emissions from recently wetted soils. This latter effect, along with enhanced deposition to the forested areas, contributes to a latitudinal gradient of ozone in the lower troposphere. Biogenic volatile organic compounds are also important in defining the composition both for the boundary layer and upper tropospheric convective outflow. Mineral dust was found to be the most abundant and ubiquitous aerosol type in the atmosphere over Western Africa. Data collected within AMMA indicate that injection of dust to altitudes favourable for long-range transport (i.e. in the upper Sahelian planetary boundary layer) can occur behind the leading edge of mesoscale convective system (MCS) cold-pools. Research within AMMA also provides the first estimates of secondary organic aerosols across the West African Sahel and have shown that organic mass loadings vary between 0 and 2 μg m−3 with a median concentration of 1.07 μg m−3. The vertical distribution of nucleation mode particle concentrations reveals that significant and fairly strong particle formation events did occur for a considerable fraction of measurement time above 8 km (and only there). Very low concentrations were observed in general in the fresh outflow of active MCSs, likely as the result of efficient wet removal of aerosol particles due to heavy precipitation inside the convective cells of the MCSs. This wet removal initially affects all particle size ranges as clearly shown by all measurements in the vicinity of MCSs.
Resumo:
The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.
Resumo:
The reuse of treated wastewater (reclaimed water) is particularly well suited for irrigated agriculture as it often contains significant quantities of plant essential nutrients. This work has shown that reclaimed water in Jordan can have adequate concentrations of potassium, phosphate, sulphate and magnesium to meet all or part of the crop’s requirements. To fully benefit from these inputs farmers must have an awareness of the water quality and reduce the application of chemical fertilisers accordingly. Interviews with farmers have shown that 75 per cent of farmers indirectly using reclaimed water are aware of the nutrients. Farmers’ decision making as to the application of chemical fertilisers appears to be influenced by a range of factors which include the type of crops being cultivated, the provision of training on nutrient management and the availability of information on the nutrient content of the reclaimed water.
Resumo:
Food security is one of this century’s key global challenges. By 2050 the world will require increased crop production in order to feed its predicted 9 billion people. This must be done in the face of changing consumption patterns, the impacts of climate change and the growing scarcity of water and land. Crop production methods will also have to sustain the environment, preserve natural resources and support livelihoods of farmers and rural populations around the world. There is a pressing need for the ‘sustainable intensifi cation’ of global agriculture in which yields are increased without adverse environmental impact and without the cultivation of more land. Addressing the need to secure a food supply for the whole world requires an urgent international effort with a clear sense of long-term challenges and possibilities. Biological science, especially publicly funded science, must play a vital role in the sustainable intensifi cation of food crop production. The UK has a responsibility and the capacity to take a leading role in providing a range of scientifi c solutions to mitigate potential food shortages. This will require signifi cant funding of cross-disciplinary science for food security. The constraints on food crop production are well understood, but differ widely across regions. The availability of water and good soils are major limiting factors. Signifi cant losses in crop yields occur due to pests, diseases and weed competition. The effects of climate change will further exacerbate the stresses on crop plants, potentially leading to dramatic yield reductions. Maintaining and enhancing the diversity of crop genetic resources is vital to facilitate crop breeding and thereby enhance the resilience of food crop production. Addressing these constraints requires technologies and approaches that are underpinned by good science. Some of these technologies build on existing knowledge, while others are completely radical approaches, drawing on genomics and high-throughput analysis. Novel research methods have the potential to contribute to food crop production through both genetic improvement of crops and new crop and soil management practices. Genetic improvements to crops can occur through breeding or genetic modifi cation to introduce a range of desirable traits. The application of genetic methods has the potential to refi ne existing crops and provide incremental improvements. These methods also have the potential to introduce radical and highly signifi cant improvements to crops by increasing photosynthetic effi ciency, reducing the need for nitrogen or other fertilisers and unlocking some of the unrealised potential of crop genomes. The science of crop management and agricultural practice also needs to be given particular emphasis as part of a food security grand challenge. These approaches can address key constraints in existing crop varieties and can be applied widely. Current approaches to maximising production within agricultural systems are unsustainable; new methodologies that utilise all elements of the agricultural system are needed, including better soil management and enhancement and exploitation of populations of benefi cial soil microbes. Agronomy, soil science and agroecology—the relevant sciences—have been neglected in recent years. Past debates about the use of new technologies for agriculture have tended to adopt an either/or approach, emphasising the merits of particular agricultural systems or technological approaches and the downsides of others. This has been seen most obviously with respect to genetically modifi ed (GM) crops, the use of pesticides and the arguments for and against organic modes of production. These debates have failed to acknowledge that there is no technological panacea for the global challenge of sustainable and secure global food production. There will always be trade-offs and local complexities. This report considers both new crop varieties and appropriate agroecological crop and soil management practices and adopts an inclusive approach. No techniques or technologies should be ruled out. Global agriculture demands a diversity of approaches, specific to crops, localities, cultures and other circumstances. Such diversity demands that the breadth of relevant scientific enquiry is equally diverse, and that science needs to be combined with social, economic and political perspectives. In addition to supporting high-quality science, the UK needs to maintain and build its capacity to innovate, in collaboration with international and national research centres. UK scientists and agronomists have in the past played a leading role in disciplines relevant to agriculture, but training in agricultural sciences and related topics has recently suffered from a lack of policy attention and support. Agricultural extension services, connecting farmers with new innovations, have been similarly neglected in the UK and elsewhere. There is a major need to review the support for and provision of extension services, particularly in developing countries. The governance of innovation for agriculture needs to maximise opportunities for increasing production, while at the same time protecting societies, economies and the environment from negative side effects. Regulatory systems need to improve their assessment of benefits. Horizon scanning will ensure proactive consideration of technological options by governments. Assessment of benefi ts, risks and uncertainties should be seen broadly, and should include the wider impacts of new technologies and practices on economies and societies. Public and stakeholder dialogue—with NGOs, scientists and farmers in particular—needs to be a part of all governance frameworks.
Resumo:
The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.
Resumo:
Risk and uncertainty are, to say the least, poorly considered by most individuals involved in real estate analysis - in both development and investment appraisal. Surveyors continue to express 'uncertainty' about the value (risk) of using relatively objective methods of analysis to account for these factors. These methods attempt to identify the risk elements more explicitly. Conventionally this is done by deriving probability distributions for the uncontrolled variables in the system. A suggested 'new' way of "being able to express our uncertainty or slight vagueness about some of the qualitative judgements and not From its modern origins, associated with the urbanising effect of industrialisation, walking has remained a popular form of outdoor recreation. It has, furthermore, remained an important site of class struggle, with the 'landless' seeking to establish their moral 'citizen' right to roam over open country in contradistinction to the 'landed', who have successfully limited this right to legally-defined public rights of way. In the face of declining farm incomes, however, farmers and landowners have, apparently, modified their attitudes towards public access, but only in return for compensation and management payments under grant schemes such as Countryside Stewardship and the Countryside Premium Scheme. With the Ministry of Agriculture, Fisheries and Food now seeking to extend paid access arrangements to other grant schemes, as part of its response to the European Union's Agri-Environment Regulations, access 'rights' are assuming an increasingly commodified form, thereby questioning, if not undermining, the former citizen claims. For rather than being a benefit of citizenship, the existence of limited, often poorly maintained and inadequately signposted, public rights of way has tied inextricably the extension of legally-enforceable access to the needs of the landowners and farmers. At a time of falling prosperity in agriculture, therefore, they have now exercised their discretion by annexing the populism of consumer culture to reproduce the bourgeois liberal values of the market as a principal determinant of the extension of citizen rights of access to the countryside.
Resumo:
A LightCycler(R) real-time PCR hybridization probe-based assay that detects a conserved region of the 16S rRNA gene of pathogenic but not saprophytic Leptospira species was developed for the rapid detection of pathogenic leptospires directly from processed tissue samples. In addition, a differential PCR specific for saprophytic leptospires and a control PCR targeting the porcine beta-actin gene were developed. To assess the suitability of these PCR methods for diagnosis, a trial was performed on kidneys taken from adult pigs with evidence of leptospiral infection, primarily a history of reproductive disease and serological evidence of exposure to pathogenic leptospires (n = 180) and aborted pig foetuses (n = 24). Leptospire DNA was detected by the 'pathogenic' specific PCR in 25 tissues (14%) and the control beta-actin PCR was positive in all 204 samples confirming DNA was extracted from all samples. No leptospires were isolated from these samples by culture and no positives were detected with the 'saprophytic' PCR. In a subsidiary experiment, the 'pathogenic' PCR was used to analyse kidney samples from rodents (n = 7) collected as part of vermin control in a zoo, with show animals with high microagglutination titres to Leptospira species, and five were positive. Fifteen PCR amplicons from 1 mouse, 2 rat and 14 pig kidney samples, were selected at random from positive PCRs (n = 30) and sequenced. Sequence data indicated L. interrogans DNA in the pig and rat samples and L. inadai DNA, which is considered of intermediate pathogenicity, in the mouse sample. The only successful culture was from this mouse kidney and the isolate was confirmed to be L. inadai by classical serology. These data suggest this suite of PCRs is suitable for testing for the presence of pathogenic leptospires in pig herds where abortions and infertility occur and potentially in other animals such as rodents. Crown Copyright (C) 2007 Published by Elsevier Ltd. All rights reserved.
Resumo:
The separate effects of ozone depleting substances (ODSs) and greenhouse gases (GHGs) on forcing circulation changes in the Southern Hemisphere extratropical troposphere are investigated using a version of the Canadian Middle Atmosphere Model (CMAM) that is coupled to an ocean. Circulation-related diagnostics include zonal wind, tropopause pressure, Hadley cell width, jet location, annular mode index, precipitation, wave drag, and eddy fluxes of momentum and heat. As expected, the tropospheric response to the ODS forcing occurs primarily in austral summer, with past (1960-99) and future (2000-99) trends of opposite sign, while the GHG forcing produces more seasonally uniform trends with the same sign in the past and future. In summer the ODS forcing dominates past trends in all diagnostics, while the two forcings contribute nearly equally but oppositely to future trends. The ODS forcing produces a past surface temperature response consisting of cooling over eastern Antarctica, and is the dominant driver of past summertime surface temperature changes when the model is constrained by observed sea surface temperatures. For all diagnostics, the response to the ODS and GHG forcings is additive: that is, the linear trend computed from the simulations using the combined forcings equals (within statistical uncertainty) the sum of the linear trends from the simulations using the two separate forcings. Space time spectra of eddy fluxes and the spatial distribution of transient wave drag are examined to assess the viability of several recently proposed mechanisms for the observed poleward shift in the tropospheric jet.
Resumo:
This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.
Resumo:
The effect of phase separation and batch duration on the trophic stages of anaerobic digestion was assessed for the first time in leach beds coupled to methanogenic reactors digesting maize (Zea mays). The system was operated for consecutive batches of 7, 14 and 28 days for ~120 days. Hydrolysis rate was higher the shorter the batch, reaching 8.5 gTSdestroyed d-1 in the 7-day system. Phase separation did not affect acidification but methanogenesis was enhanced in the short feed cycle leach beds. Phase separation was inefficient on the 7-day system, where ~89% of methane was produced in the leach bed. Methane production rate increased with shortening the feed cycle, reaching 3.523 l d-1 average in the 7-day system. Low strength leachate from the leach beds decreased methanogenic activity of methanogenic reactors’ sludges. Enumeration of cellulolytic and methanogenic microorganisms indicated a constant inoculation of leach beds and methanogenic reactors through leachate recirculation.
Resumo:
A two-phase system composed by a leach bed and a methanogenic reactor was modified for the first time to improve volumetric substrate degradation and methane yields from a complex substrate (maize; Zea mays). The system, which was operated for consecutive feed cycles of different durations for 120 days, was highly flexible and its performance improved by altering operational conditions. Daily substrate degradation was higher the shorter the feed cycle, reaching 8.5 g TSdestroyed d�1 (7-day feed cycle) but the overall substrate degradation was higher by up to 55% when longer feed cycles (14 and 28 days) were applied. The same occurred with volumetric methane yields, reaching 0.839 m3 (m3)�1 d�1. The system performed better than others on specific methane yields, reaching 0.434 m3 kg�1 TSadded, in the 14-day and 28-day systems. The UASB and AF designs performed similarly as second stage reactors on methane yields, SCOD and VFA removal efficiencies.
Resumo:
Variational data assimilation in continuous time is revisited. The central techniques applied in this paper are in part adopted from the theory of optimal nonlinear control. Alternatively, the investigated approach can be considered as a continuous time generalization of what is known as weakly constrained four-dimensional variational assimilation (4D-Var) in the geosciences. The technique allows to assimilate trajectories in the case of partial observations and in the presence of model error. Several mathematical aspects of the approach are studied. Computationally, it amounts to solving a two-point boundary value problem. For imperfect models, the trade-off between small dynamical error (i.e. the trajectory obeys the model dynamics) and small observational error (i.e. the trajectory closely follows the observations) is investigated. This trade-off turns out to be trivial if the model is perfect. However, even in this situation, allowing for minute deviations from the perfect model is shown to have positive effects, namely to regularize the problem. The presented formalism is dynamical in character. No statistical assumptions on dynamical or observational noise are imposed.
Resumo:
Summer rainfall over China has experienced substantial variability on longer time scales during the last century, and the question remains whether this is due to natural, internal variability or is part of the emerging signal of anthropogenic climate change. Using the best available observations over China, the decadal variability and recent trends in summer rainfall are investigated with the emphasis on changes in the seasonal evolution and on the temporal characteristics of daily rainfall. The possible relationships with global warming are reassessed. Substantial decadal variability in summer rainfall has been confirmed during the period 1958–2008; this is not unique to this period but is also seen in the earlier decades of the twentieth century. Two dominant patterns of decadal variability have been identified that contribute substantially to the recent trend of southern flooding and northern drought. Natural decadal variability appears to dominate in general but in the cases of rainfall intensity and the frequency of rainfall days, particularly light rain days, then the dominant EOFs have a rather different character, being of one sign over most of China, and having principal components (PCs) that appear more trendlike. The increasing intensity of rainfall throughout China and the decrease in light rainfall days, particularly in the north, could at least partially be of anthropogenic origin, both global and regional, linked to increased greenhouse gases and increased aerosols.
Resumo:
Sampling strategies for monitoring the status and trends in wildlife populations are often determined before the first survey is undertaken. However, there may be little information about the distribution of the population and so the sample design may be inefficient. Through time, as data are collected, more information about the distribution of animals in the survey region is obtained but it can be difficult to incorporate this information in the survey design. This paper introduces a framework for monitoring motile wildlife populations within which the design of future surveys can be adapted using data from past surveys whilst ensuring consistency in design-based estimates of status and trends through time. In each survey, part of the sample is selected from the previous survey sample using simple random sampling. The rest is selected with inclusion probability proportional to predicted abundance. Abundance is predicted using a model constructed from previous survey data and covariates for the whole survey region. Unbiased design-based estimators of status and trends and their variances are derived from two-phase sampling theory. Simulations over the short and long-term indicate that in general more precise estimates of status and trends are obtained using this mixed strategy than a strategy in which all of the sample is retained or all selected with probability proportional to predicted abundance. Furthermore the mixed strategy is robust to poor predictions of abundance. Estimates of status are more precise than those obtained from a rotating panel design.