67 resultados para Extremal polynomial ultraspherical polynomials
Resumo:
This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E³, the spheres S³ and the hyperboloids H³ with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1,3). The optimal controls of these systems are solved explicitly in terms of elliptic functions. In this paper, a geometric interpretation of the extremal solutions is given with particular emphasis to a singularity in the explicit solutions. Using a reduced form of the Casimir functions the geometry of these solutions is illustrated.
Resumo:
This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.
Resumo:
This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a 3-D space. A Lie group formulation arises naturally and the vehicles are modeled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically, the 3-D space forms Euclidean space E-3, the sphere S-3, and the hyperboloid H'. The corresponding frame bundles are equal to the Euclidean group of motions SE(3), the rotation group SO(4), and the Lorentz group SO (1, 3). The maximum principle of optimal control shifts the emphasis for these systems to the associated Hamiltonian formalism. For an integrable case, the extremal curves are explicitly expressed in terms of elliptic functions. In this paper, a study at the singularities of the extremal curves are given, which correspond to critical points of these elliptic functions. The extremal curves are characterized as the intersections of invariant surfaces and are illustrated graphically at the singular points. It. is then shown that the projections, of the extremals onto the base space, called elastica, at these singular points, are curves of constant curvature and torsion, which in turn implies that the oriented vehicles trace helices.
Resumo:
We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.
Resumo:
The large scale fading of wireless mobile communications links is modelled assuming the mobile receiver motion is described by a dynamic linear system in state-space. The geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A Wiener system subspace identification algorithm in conjunction with polynomial regression is used to identify a model from time-domain estimates of the field intensity assuming a multitude of emitters and an antenna array at the receiver end.
Resumo:
We introduce and describe the Multiple Gravity Assist problem, a global optimisation problem that is of great interest in the design of spacecraft and their trajectories. We discuss its formalization and we show, in one particular problem instance, the performance of selected state of the art heuristic global optimisation algorithms. A deterministic search space pruning algorithm is then developed and its polynomial time and space complexity derived. The algorithm is shown to achieve search space reductions of greater than six orders of magnitude, thus reducing significantly the complexity of the subsequent optimisation.
Resumo:
In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.
Resumo:
We consider problems of splitting and connectivity augmentation in hypergraphs. In a hypergraph G = (V +s, E), to split two edges su, sv, is to replace them with a single edge uv. We are interested in doing this in such a way as to preserve a defined level of connectivity in V . The splitting technique is often used as a way of adding new edges into a graph or hypergraph, so as to augment the connectivity to some prescribed level. We begin by providing a short history of work done in this area. Then several preliminary results are given in a general form so that they may be used to tackle several problems. We then analyse the hypergraphs G = (V + s, E) for which there is no split preserving the local-edge-connectivity present in V. We provide two structural theorems, one of which implies a slight extension to Mader’s classical splitting theorem. We also provide a characterisation of the hypergraphs for which there is no such “good” split and a splitting result concerned with a specialisation of the local-connectivity function. We then use our splitting results to provide an upper bound on the smallest number of size-two edges we must add to any given hypergraph to ensure that in the resulting hypergraph we have λ(x, y) ≥ r(x, y) for all x, y in V, where r is an integer valued, symmetric requirement function on V*V. This is the so called “local-edge-connectivity augmentation problem” for hypergraphs. We also provide an extension to a Theorem of Szigeti, about augmenting to satisfy a requirement r, but using hyperedges. Next, in a result born of collaborative work with Zoltán Király from Budapest, we show that the local-connectivity augmentation problem is NP-complete for hypergraphs. Lastly we concern ourselves with an augmentation problem that includes a locational constraint. The premise is that we are given a hypergraph H = (V,E) with a bipartition P = {P1, P2} of V and asked to augment it with size-two edges, so that the result is k-edge-connected, and has no new edge contained in some P(i). We consider the splitting technique and describe the obstacles that prevent us forming “good” splits. From this we deduce results about which hypergraphs have a complete Pk-split. This leads to a minimax result on the optimal number of edges required and a polynomial algorithm to provide an optimal augmentation.
Resumo:
In this paper, we discuss the problem of globally computing sub-Riemannian curves on the Euclidean group of motions SE(3). In particular, we derive a global result for special sub-Riemannian curves whose Hamiltonian satisfies a particular condition. In this paper, sub-Riemannian curves are defined in the context of a constrained optimal control problem. The maximum principle is then applied to this problem to yield an appropriate left-invariant quadratic Hamiltonian. A number of integrable quadratic Hamiltonians are identified. We then proceed to derive convenient expressions for sub-Riemannian curves in SE(3) that correspond to particular extremal curves. These equations are then used to compute sub-Riemannian curves that could potentially be used for motion planning of underwater vehicles.
Resumo:
We consider scattering of a time harmonic incident plane wave by a convex polygon with piecewise constant impedance boundary conditions. Standard finite or boundary element methods require the number of degrees of freedom to grow at least linearly with respect to the frequency of the incident wave in order to maintain accuracy. Extending earlier work by Chandler-Wilde and Langdon for the sound soft problem, we propose a novel Galerkin boundary element method, with the approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh with smaller elements closer to the corners of the polygon. Theoretical analysis and numerical results suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency of the incident wave.
Resumo:
In the last few years a state-space formulation has been introduced into self-tuning control. This has not only allowed for a wider choice of possible control actions, but has also provided an insight into the theory underlying—and hidden by—that used in the polynomial description. This paper considers many of the self-tuning algorithms, both state-space and polynomial, presently in use, and by starting from first principles develops the observers which are, effectively, used in each case. At any specific time instant the state estimator can be regarded as taking one of two forms. In the first case the most recently available output measurement is excluded, and here an optimal and conditionally stable observer is obtained. In the second case the present output signal is included, and here it is shown that although the observer is once again conditionally stable, it is no longer optimal. This result is of significance, as many of the popular self-tuning controllers lie in the second, rather than first, category.
Resumo:
This paper employs a state space system description to provide a pole placement scheme via state feedback. It is shown that when a recursive least squares estimation scheme is used, the feedback employed can be expressed simply in terms of the estimated system parameters. To complement the state feedback approach, a method employing both state feedback and linear output feedback is discussed. Both methods arc then compared with the previous output polynomial type feedback schemes.
Resumo:
A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.
Resumo:
A polynomial-based ARMA model, when posed in a state-space framework can be regarded in many different ways. In this paper two particular state-space forms of the ARMA model are considered, and although both are canonical in structure they differ in respect of the mode in which disturbances are fed into the state and output equations. For both forms a solution is found to the optimal discrete-time observer problem and algebraic connections between the two optimal observers are shown. The purpose of the paper is to highlight the fact that the optimal observer obtained from the first state-space form, commonly known as the innovations form, is not that employed in an optimal controller, in the minimum-output variance sense, whereas the optimal observer obtained from the second form is. Hence the second form is a much more appropriate state-space description to use for controller design, particularly when employed in self-tuning control schemes.
Resumo:
The modelling of a nonlinear stochastic dynamical processes from data involves solving the problems of data gathering, preprocessing, model architecture selection, learning or adaptation, parametric evaluation and model validation. For a given model architecture such as associative memory networks, a common problem in non-linear modelling is the problem of "the curse of dimensionality". A series of complementary data based constructive identification schemes, mainly based on but not limited to an operating point dependent fuzzy models, are introduced in this paper with the aim to overcome the curse of dimensionality. These include (i) a mixture of experts algorithm based on a forward constrained regression algorithm; (ii) an inherent parsimonious delaunay input space partition based piecewise local lineal modelling concept; (iii) a neurofuzzy model constructive approach based on forward orthogonal least squares and optimal experimental design and finally (iv) the neurofuzzy model construction algorithm based on basis functions that are Bézier Bernstein polynomial functions and the additive decomposition. Illustrative examples demonstrate their applicability, showing that the final major hurdle in data based modelling has almost been removed.