47 resultados para Experiment Of Microgravity Fluid Mechanics
Resumo:
In decaying two-dimensional Navier-Stokes turbulence, Batchelor's similarity hypothesis fails due to the existence of coherent vortices. However, it is shown that decaying two-dimensional turbulence governed by the Harney-Hasegawa-Mima (CHM) equation ∂/∂t (V^2 φ-λ^2 φ)+J(φ,∇^2 φ)=D where D is a damping, is described well by Batchelor's similarity hypothesis for wave numbers k ≪ λ (the so-called AM regime). It is argued that CHM turbulence in the AM regime is a more `ideal' form of two-dimensional turbulence than is Navier-Stokes turbulence itself.
Resumo:
The energy–Casimir method is applied to the problem of symmetric stability in the context of a compressible, hydrostatic planetary atmosphere with a general equation of state. Formal stability criteria for symmetric disturbances to a zonally symmetric baroclinic flow are obtained. In the special case of a perfect gas the results of Stevens (1983) are recovered. Finite-amplitude stability conditions are also obtained that provide an upper bound on a certain positive-definite measure of disturbance amplitude.
Resumo:
Nonlinear stability theorems analogous to Arnol'd's second stability theorem are established for continuously stratified quasi-geostrophic flow with general nonlinear boundary conditions in a vertically and horizontally confined domain. Both the standard quasi-geostrophic model and the modified quasi-geostrophic model (incorporating effects of hydrostatic compressibility) are treated. The results establish explicit upper bounds on the disturbance energy, the disturbance potential enstrophy, and the disturbance available potential energy on the horizontal boundaries, in terms of the initial disturbance fields. Nonlinear stability in the sense of Liapunov is also established.
Resumo:
New nonlinear stability theorems are derived for disturbances to steady basic flows in the context of the multilayer quasi-geostrophic equations. These theorems are analogues of Arnol’d's second stability theorem, the latter applying to the two-dimensional Euler equations. Explicit upper bounds are obtained on both the disturbance energy and disturbance potential enstrophy in terms of the initial disturbance fields. An important feature of the present analysis is that the disturbances are allowed to have non-zero circulation. While Arnol’d's stability method relies on the energy–Casimir invariant being sign-definite, the new criteria can be applied to cases where it is sign-indefinite because of the disturbance circulations. A version of Andrews’ theorem is established for this problem, and uniform potential vorticity flow is shown to be nonlinearly stable. The special case of two-layer flow is treated in detail, with particular attention paid to the Phillips model of baroclinic instability. It is found that the short-wave portion of the marginal stability curve found in linear theory is precisely captured by the new nonlinear stability criteria.
Resumo:
A novel method is presented for obtaining rigorous upper bounds on the finite-amplitude growth of instabilities to parallel shear flows on the beta-plane. The method relies on the existence of finite-amplitude Liapunov (normed) stability theorems, due to Arnol'd, which are nonlinear generalizations of the classical stability theorems of Rayleigh and Fjørtoft. Briefly, the idea is to use the finite-amplitude stability theorems to constrain the evolution of unstable flows in terms of their proximity to a stable flow. Two classes of general bounds are derived, and various examples are considered. It is also shown that, for a certain kind of forced-dissipative problem with dissipation proportional to vorticity, the finite-amplitude stability theorems (which were originally derived for inviscid, unforced flow) remain valid (though they are no longer strictly Liapunov); the saturation bounds therefore continue to hold under these conditions.
Resumo:
The quantitative effects of uniform strain and background rotation on the stability of a strip of constant vorticity (a simple shear layer) are examined. The thickness of the strip decreases in time under the strain, so it is necessary to formulate the linear stability analysis for a time-dependent basic flow. The results show that even a strain rate γ (scaled with the vorticity of the strip) as small as 0.25 suppresses the conventional Rayleigh shear instability mechanism, in the sense that the r.m.s. wave steepness cannot amplify by more than a certain factor, and must eventually decay. For γ < 0.25 the amplification factor increases as γ decreases; however, it is only 3 when γ e 0.065. Numerical simulations confirm the predictions of linear theory at small steepness and predict a threshold value necessary for the formation of coherent vortices. The results help to explain the impression from numerous simulations of two-dimensional turbulence reported in the literature that filaments of vorticity infrequently roll up into vortices. The stabilization effect may be expected to extend to two- and three-dimensional quasi-geostrophic flows.
Resumo:
In addition to the Hamiltonian functional itself, non-canonical Hamiltonian dynamical systems generally possess integral invariants known as ‘Casimir functionals’. In the case of the Euler equations for a perfect fluid, the Casimir functionals correspond to the vortex topology, whose invariance derives from the particle-relabelling symmetry of the underlying Lagrangian equations of motion. In a recent paper, Vallis, Carnevale & Young (1989) have presented algorithms for finding steady states of the Euler equations that represent extrema of energy subject to given vortex topology, and are therefore stable. The purpose of this note is to point out a very general method for modifying any Hamiltonian dynamical system into an algorithm that is analogous to those of Vallis etal. in that it will systematically increase or decrease the energy of the system while preserving all of the Casimir invariants. By incorporating momentum into the extremization procedure, the algorithm is able to find steadily-translating as well as steady stable states. The method is applied to a variety of perfect-fluid systems, including Euler flow as well as compressible and incompressible stratified flow.
Resumo:
It is shown that, for a sufficiently large value of β, two-dimensional flow on a doubly-periodic beta-plane cannot be ergodic (phase-space filling) on the phase-space surface of constant energy and enstrophy. A corresponding result holds for flow on the surface of a rotating sphere, for a sufficiently rapid rotation rate Ω. This implies that the higher-order, non-quadratic invariants are exerting a significant influence on the statistical evolution of the flow. The proof relies on the existence of a finite-amplitude Liapunov stability theorem for zonally symmetric basic states with a non-vanishing absolute-vorticity gradient. When the domain size is much larger than the size of a typical eddy, then a sufficient condition for non-ergodicity is that the wave steepness ε < 1, where ε = 2[surd radical]2Z/βU in the planar case and $\epsilon = 2^{\frac{1}{4}} a^{\frac{5}{2}}Z^{\frac{7}{4}}/\Omega U^{\frac{5}{2}}$ in the spherical case, and where Z is the enstrophy, U the r.m.s. velocity, and a the radius of the sphere. This result may help to explain why numerical simulations of unforced beta-plane turbulence (in which ε decreases in time) seem to evolve into a non-ergodic regime at large scales.
Resumo:
In polar oceans, seawater freezes to form a layer of sea ice of several metres thickness that can cover up to 8% of the Earth’s surface. The modelled sea ice cover state is described by thickness and orientational distribution of interlocking, anisotropic diamond-shaped ice floes delineated by slip lines, as supported by observation. The purpose of this study is to develop a set of equations describing the mean-field sea ice stresses that result from interactions between the ice floes and the evolution of the ice floe orientation, which are simple enough to be incorporated into a climate model. The sea ice stress caused by a deformation of the ice cover is determined by employing an existing kinematic model of ice floe motion, which enables us to calculate the forces acting on the ice floes due to crushing into and sliding past each other, and then by averaging over all possible floe orientations. We describe the orientational floe distribution with a structure tensor and propose an evolution equation for this tensor that accounts for rigid body rotation of the floes, their apparent re-orientation due to new slip line formation, and change of shape of the floes due to freezing and melting. The form of the evolution equation proposed is motivated by laboratory observations of sea ice failure under controlled conditions. Finally, we present simulations of the evolution of sea ice stress and floe orientation for several imposed flow types. Although evidence to test the simulations against is lacking, the simulations seem physically reasonable.
Resumo:
A morphological instability of a mushy layer due to a forced flow in the melt is analysed. The instability is caused by flow induced in the mushy layer by Bernoulli suction at the crests of a sinusoidally perturbed mush–melt interface. The flow in the mushy layer advects heat away from crests which promotes solidification. Two linear stability analyses are presented: the fundamental mechanism for instability is elucidated by considering the case of uniform flow of an inviscid melt; a more complete analysis is then presented for the case of a parallel shear flow of a viscous melt. The novel instability mechanism we analyse here is contrasted with that investigated by Gilpin et al. (1980) and is found to be more potent for the case of newly forming sea ice.
Resumo:
The relations between the rheological and electrical properties of NaY zeolite electrorheological fluid and its solid phase are studied. It is found that then exist complex relations between its electrical and theological properties. The temperature spectra of dielectric properties of the fluid under high AC electric field are strongly field strength dependent. The relation between the DC conductivity of the fluid and the exciting electric field is experimentally presented as log sigma =A+BE1/2, when A is a strong function, but B, a very weak function of temperature. The shear stress of the fluid under a fixed electric field and temperature decreases with shear rate. A relaxation time for the adsorbed charges is estimated to be about 0.3 to 6.6 s in the temperature range from 280 to 380 K. The relaxation time qualitatively corresponds to the shear rate at which the shear stress begins to drop. The time dependent leaking current of the ER fluids under DC electric field is also measured. The conductivity increase is mainly caused by the structure evolution of particles. The experimental results can he explained with the calculations of Davis (J. Appl. Phys. 81(1997) pp.1985-1991) and Martin (J. Chem. Phys. 110(1999) pp.4854-4866). It is predicted that the NaY zeolite ER fluid strength would get degraded slowly.
Resumo:
The three-dimensional molecular dynamics simulation method has been used to study the dynamic responses of an electrorheological (ER) fluid in oscillatory shear. The structure and related viscoelastic behaviour of the fluid are found to be sensitive to the amplitude of the strain. With the increase of the strain amplitude, the structure formed by the particles changes from isolated columns to sheet-like structures which may be perpendicular or parallel to the oscillating direction. Along with the structure evolution, the field-induced moduli decrease significantly with an increase in strain amplitude. The viscoelastic behaviour of the structures obtained in the cases of different strain amplitudes was examined in the linear response regime and an evident structure dependence of the moduli was found. The reason for this lies in the anisotropy of the arrangement of the particles in these structures. Short-range interactions between the particles cannot be neglected in determining the viscoelastic behaviour of ER fluids at small strain amplitude, especially for parallel sheets. The simulation results were compared with available experimental data and good agreement was reached for most of them.
Resumo:
The influence of the size distribution of particles on the viscous property of an electrorheological fluid has been investigated by the molecular dynamic simulation method. The shear stress of the fluid is found to decrease with the increase of the variance sigma(2) of the Gaussian distribution of the particle size, and then reach a steady value when sigma is larger than 0.5. This phenomenon is attributed to the influence of the particle size distribution on the dynamic structural evolution in the fluid as well as the strength of the different chain-like structures formed by the particles.