48 resultados para Essential amino acids
Resumo:
The effect of variety, agronomic and environmental factors on the chemical composition and energy value for ruminants and non-ruminants of husked and naked oats grain was studied. Winter oats were grown as experimental plots in each of 2 years on three sites in England. At each site two conventional husked oat cultivars (Gerald and Image) and two naked cultivars (Kynon and Pendragon) were grown. At each site, crops were sown on two dates and all crops were grown with the application of either zero or optimum fertiliser nitrogen. Variety and factors contained within the site + year effect had the greatest influence on the chemical composition and nutritive value of oats, followed by nitrogen ferfiliser treatment. For example, compared with zero nitrogen, the optimum nitrogen fertiliser treatment resulted in a consistent and significant (P < 0.001) increase in crude protein for all varieties at all sites from an average of 95 to 118 g kg(-1) DM, increased the potassium concentration in all varieties from an average of 4.9 to 5.1 g kg(-1) DM (P < 0.01) and reduced total lipid by a small but significant (P < 0.001) amount. Optimum nitrogen increased (P < 0.001) the NDF concentration in the two husked varieties and in the naked variety Pendragon. Naked cultivars were lower in fibre, had considerably higher energy, total lipid, linoleic acid, protein, starch and essential amino acids than the husked cultivars. Thus nutritionists need to be selective in their choice of naked or husked oat depending on the intended dietary use. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
1. The growth (increase in height and leaf number) of four grass species was reduced by a -0.5 MPa drought stress, but the performance of an associated herbivore, Rhopalosiphum padi (L.), was not affected consistently. The intrinsic rate of increase of R. padi was reduced by drought stress on three grass species, including Dactylis glomerata (L.), but was unaffected on Arrhenatherum elatius (L.). Therefore, there is no general relationship in the effect of plant drought on an insect herbivore, even among closely related host plant species. 2. Drought stress increased the quality of plant phloem sap, as indicated by increased sieve element osmotic pressure and essential amino acid concentrations. Thus, diet quality could not account for the reduced performance of R. padi under drought stress. The concentration of essential amino acids in the phloem of well-watered A. elatius was, however, lower than that of well-watered D. glomerata, correlating with the decreased performance of aphids on well-watered A. elatius. 3. There were no differences in aphid feeding duration between watering treatments or plant species but sap ingestion rates were reduced significantly under drought stress. 4. Using the measure of dietary amino acid concentrations and the estimate of sap ingestion, the essential amino acid flux through aphids was calculated. Compared with the flux through aphids feeding on well-watered D. glomerata, there was a reduction in aphids feeding on drought-stressed D. glomerata and drought-stressed A. elatius due to lower sap ingestion rates. The flux through aphids on well-watered A. elatius was also reduced due to low phloem essential amino acid concentrations. Thus, the performance of an aphid is correlated with the availability and accessibility of essential amino acids.
Resumo:
We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n=16; <48 y) and elderly (n=33; >65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population.
Resumo:
A commercial blend of essential oil (EO) compounds was added to a grass, maize silage, and concentrate diet fed to dairy cattle in order to determine their influence on protein metabolism by ruminal microorganisms. EO inhibited (P < 0.05) the rate of deamination of amino acids. Pure-culture studies indicated that the species most sensitive to EO were ammonia-hyperproducing bacteria and anaerobic fungi.
Resumo:
The biological reduction of atmospheric N-2 to ammonium (nitrogen fixation) provides about 65% of the biosphere's available nitrogen. Most of this ammonium is contributed by legume rhizobia symbioses(1), which are initiated by the infection of legume hosts by bacteria (rhizobia), resulting in formation of root nodules. Within the nodules, rhizobia are found as bacteroids, which perform the nitrogen fixation: to do this, they obtain sources of carbon and energy from the plant, in the form of dicarboxylic acids(2,3). It has been thought that, in return, bacteroids simply provide the plant with ammonium. But here we show that a more complex amino-acid cycle is essential for symbiotic nitrogen fixation by Rhizobium in pea nodules. The plant provides amino acids to the bacteroids, enabling them to shut down their ammonium assimilation. In return, bacteroids act like plant organelles to cycle amino acids back to the plant for asparagine synthesis. The mutual dependence of this exchange prevents the symbiosis being dominated by the plant, and provides a selective pressure for the evolution of mutualism.
Resumo:
Flagellate bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium typically express 5 to 12 flagellar filaments over their cell surface that rotate in clockwise (CW) and counterclockwise directions. These bacteria modulate their swimming direction towards favorable environments by biasing the direction of flagellar rotation in response to various stimuli. In contrast, Rhodobacter sphaeroides expresses a single subpolar flagellum that rotates only CW and responds tactically by a series of biased stops and starts. Rotor protein FliG transiently links the MotAB stators to the rotor, to power rotation and also has an essential function in flagellar export. In this study, we sought to determine whether the FliG protein confers directionality on flagellar motors by testing the functional properties of R. sphaeroides FliG and a chimeric FliG protein, EcRsFliG (N-terminal and central domains of E. coli FliG fused to an R. sphaeroides FliG C terminus), in an E. coli FliG null background. The EcRsFliG chimera supported flagellar synthesis and bidirectional rotation; bacteria swam and tumbled in a manner qualitatively similar to that of the wild type and showed chemotaxis to amino acids. Thus, the FliG C terminus alone does not confer the unidirectional stop-start character of the R. sphaeroides flagellar motor, and its conformation continues to support tactic, switch-protein interactions in a bidirectional motor, despite its evolutionary history in a bacterium with a unidirectional motor.
Resumo:
Single crystal X-ray diffraction studies and solvent dependent H-1 NMR titrations reveal that a set of four tetrapeptides with general formula Boc-Xx(1)-Aib(2)-Yy(3)-Zz(4)-OMe, where Xx, Yy and Zz are coded L- amino acids, adopt equivalent conformations that can be described as overlapping double turn conformations stabilized by two 4 -> 1 intramolecular hydrogen bonds between Yy(3)-NH and Boc C=O and Zz(4)-NH and Xx(1)C=O. In the crystalline state, the double turn structures are packed in head-to-tail fashion through intermolecular hydrogen bonds to create supramolecular helical structures. Field emission scanning electron microscopic (FE-SEM) images of the tetrapeptides in the solid state reveal that they can form flat tape-like structures. The results establish that synthetic Aib containing supramolecular helices can form highly ordered self-aggregated amyloid plaque like human amylin.
Resumo:
Sixteen early to mid lactation Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-day experimental periods and a 4 5 2 factorial arrangement of treatments to evaluate the effects of heat-treated rapeseed expeller and solvent-extracted soya-bean meal protein supplements on animal performance. Dietary treatments consisted of grass silage offered ad libitum supplemented with a fixed amount of a cereal based concentrate (10 kg/day on a fresh weight basis) containing 120, 150, 180 or 210 g crude protein (CP) per kg dry matter (DM). Concentrate CP content was manipulated by replacement of basal ingredients (g/kg) with either rapeseed expeller (R; 120, 240 and 360) or soya-bean meal (S; 80, 160 and 240). Increases in concentrate CP stimulated linear increases (P < 0.05) in silage intake (mean 22.5 and 23.8 g DM per g/kg increase in dietary CP content, for R and S, respectively) and milk production. Concentrate inclusion of rapeseed expeller elicited higher (P < 0.01) milk yield and milk protein output responses (mean 108 and 3.71 g/day per g/kg DM increase in dietary CP content) than soya-bean meal (corresponding values 62 and 2.57). Improvements in the apparent utilization of dietary nitrogen for milk protein synthesis (mean 0.282 and 0.274, for R and S, respectively) were associated with higher (P < 0.05) plasma concentrations of histidine, branched-chain, essential and total amino acids (35, 482, 902 and 2240 and 26, 410, 800 and 2119 mu mol/l, respectively) and lower (P < 0.01) concentrations of urea (corresponding values 4.11 and 4.52 mmol/l). Heat-treated rapeseed expeller proved to be a more effective protein supplement than solvent-extracted soya-bean meal for cows offered grass silage-based diets.
Resumo:
A review of agronomic and genetic approaches as strategies for the mitigation of acrylamide risk in wheat and potato is presented. Acrylamide is formed through the Maillard reaction during high-temperature cooking, such as frying, roasting, or baking, and the main precursors are free asparagine and reducing sugars. In wheat flour, acrylamide formation is determined by asparagine levels and asparagine accumulation increases dramatically in response to sulfur deprivation and, to a much lesser extent, with nitrogen feeding. In potatoes, in which sugar concentrations are much lower, the relationships between acrylamide and its precursors are more complex. Much attention has been focused on reducing the levels of sugars in potatoes as a means of reducing acrylamide risk. However, the level of asparagine as a proportion of the total free amino acid pool has been shown to be a key parameter, indicating that when sugar levels are limiting, competition between asparagine and the other amino acids for participation in the Maillard reaction determines acrylamide formation. Genetic approaches to reducing acrylamide risk include the identification of cultivars; and other germplasm in which free asparagine and/or sugar levels are low and the manipulation of genes involved in sugar and amino acid metabolism and signaling. These approaches are made more difficult by genotype/ environment interactions that can result in a genotype being "good" in one environment but "poor" in another. Another important consideration is the effect that any change could have on flavor in the cooked product. Nevertheless, as both wheat and potato are regarded as of relatively high acrylamide risk compared with, for example, maize and rice, it is essential that changes are achieved that mitigate the problem.
Resumo:
Protein, generally agreed to be the most satiating macronutrient, may differ in its effects on appetite depending on the protein source and variation in digestion and absorption. We investigated the effects of two milk protein types, casein and whey, on food intake and subjective ratings of hunger and fullness, and on postprandial metabolite and gastrointestinal hormone responses. Two studies were undertaken. The first study showed that energy intake from a buffet meal ad libitum was significantly less 90 min after a 1700 kJ liquid preload containing 48 g whey, compared with an equivalent casein preload (P<0.05). In the second study, the same whey preload led to a 28 % increase in postprandial plasma amino acid concentrations over 3 h compared with casein (incremental area under the curve (iAUC), P<0.05). Plasma cholecystokinin (CCK) was increased by 60 % (iAUC, P<0.005), glucagon-like peptide (GLP)-1 by 65 % (iAUC, P<0.05) and glucose-dependent insulinotropic polypeptide by 36 % (iAUC, P<0.01) following the whey preload compared with the casein. Gastric emptying was influenced by protein type as evidenced by differing plasma paracetamol profiles with the two preloads. Greater subjective satiety followed the whey test meal (P<0.05). These results implicate post-absorptive increases in plasma amino acids together with both CCK and GLP-1 as potential mediators of the increased satiety response to whey and emphasise the importance of considering the impact of protein type on the appetite response to a mixed meal.
Resumo:
Acrylamide forms from free asparagine and reducing sugars during cooking, with asparagine concentration being the key parameter determining the formation in foods produced from wheat flour. In this study free amino acid concentrations were measured in the grain of varieties Spark and Rialto and four doubled haploid lines from a Spark x Rialto mapping population. The parental and doubled haploid lines had differing levels of total free amino acids and free asparagine in the grain, with one line consistently being lower than either parent for both of these factors. Sulfur deprivation led to huge increases in the concentrations of free asparagine and glutamine, and canonical variate analysis showed clear separation of the grain samples as a result of treatment (environment, E) and genotype (G) and provided evidence of G x E interactions. Low grain sulfur and high free asparagine concentration were closely associated with increased risk of acrylamide formation. G, E, and G x E effects were also evident in grain from six varieties of wheat grown at field locations around the United Kingdom in 2006 and 2007. The data indicate that progress in reducing the risk of acrylamide formation in processed wheat products could be made immediately through the selection and cultivation of low grain asparagme varieties and that further genetically driven improvements should be achievable. However, genotypes that are selected should also be tested under a range of environmental conditions.
Resumo:
The chemical composition and fractional distribution of protein isolates prepared from species of Mucuna bean were studied. Using six different extraction media, the yield of protein based on the Kjeldahl procedure varied from 8% to 34%, and the protein content varied from 75% to 95%. When the yields were high, the colour of the isolates generally tended to be dark and unsatisfactory. Hence, the use of chemical treatments and high pressure processing were explored. The solubility maxima for the protein isolates in water were found to occur at pH values of 2.0 and 11.0, while the pH corresponding to minimum solubility (i.e. isoelectric region) occurred at pH values of 4.0 and 5.0. The total essential amino acid in the isolates ranged from 495 to 557 mg g(-1) protein, which compares favourably with the recommended level for pre-school and school children. Methionine and cysteine were the limiting amino acids. A key nutritional attribute of the protein isolates was its high lysine content. The isolate can therefore complement cereal-based foods which are deficient in lysine. The proteins mainly consisted of albumins, glutelins and globulins. Prolamins were only present in trace concentration (< 0.3%). Gel filtration chromatograms of the isolates indicated the presence of major protein fractions with molecular weights of 40 and 15 kDa, while gel electrophoresis (SDS-PAGE) indicated a major broad zone with molecular weights of 36 +/- 7 and 17.3 +/- 13 kDa. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The first example of an intramolecular enantioselective Michael addition of nitronates onto conjugated systems utilizing a chiral phase-transfer catalyst is described. A range of five-membered gamma-nitro esters with up to three stereocentres have been prepared and the relative and absolute configurations proven by chemical and crystallographic methods. The products are rapidly obtained and are precursors to five-membered cyclic gamma-amino acids.
Resumo:
In this study, differences at the genetic level of 37 Salmonella Enteritidis strains from five phage types (PTs) were compared using comparative genomic hybridization (CGH) to assess differences between PTs. There were approximately 400 genes that differentiated prevalent (4, 6, 8 and 13a) and sporadic (11) PTs, of which 35 were unique to prevalent PTs, including six plasmid-borne genes, pefA, B, C, D, srgC and rck, and four chromosomal genes encoding putative amino acid transporters. Phenotype array studies also demonstrated that strains from prevalent PTs were less susceptible to urea stress and utilized L-histidine, L-glutamine, L-proline, L-aspartic acid, gly-asn and gly-gln more efficiently than PT11 strains. Complementation of a PT11 strain with the transporter genes from PT4 resulted in a significant increase in utilization of the amino acids and reduced susceptibility to urea stress. In epithelial cell association assays, PT11 strains were less invasive than other prevalent PTs. Most strains from prevalent PTs were better biofilm formers at 37 degrees C than at 28 degrees C, whilst the converse was true for PT11 strains. Collectively, the results indicate that genetic and corresponding phenotypic differences exist between strains of the prevalent PTs 4, 6, 8 and 13a and non-prevalent PT11 strains that are likely to provide a selective advantage for strains from the former PTs and could help them to enter the food chain and cause salmonellosis.
Resumo:
A set of backbone modified peptides of general formula Boc-Xx-m-ABA-Yy-OMe where m-ABA is meta-aminobenzoic acid and Xx and Yy are natural amino acids such as Phe, Gly, Pro, Leu, Ile, Tyr and Trp etc., are found to self-assemble into soft nanovesicular structures in methanol-water solution (9:1 by v/v). At higher concentration the peptides generate larger vesicles which are formed through fusion of smaller vesicles. The formation of vesicles has been facilitated through the participation of various noncovalent interactions such as aromatic pi-stacking, hydrogen bonding and hydrophobic interactions. Model study indicates that the pi-stacking induced self-assembly, mediated by m-ABA is essential for well structured vesicles formation. The presence of conformationally rigid m-ABA in the backbone of the peptides also helps to form vesicular structures by restricting the conformational entropy. The vesicular structures get disrupted in presence of various salts such as KCl, CaCl(2), N(n-Bu)(4)Br and (NH(4))(2)SO(4) in methanol-water solution. Fluorescence microscopy and UV studies reveal that the soft nanovesicles encapsulate organic dye molecules such as Rhodamine B and Acridine Orange which could be released through salts induced disruption of vesicles.