82 resultados para Environmental Sensitivity and Use-value
Resumo:
Growth and water use of sole crops and intercrops of morphologically contrasting maize and pea cultivars were measured in two years. The maize cultivars were Nancis with erectophile and Sophy with planophile leaves and the pea cultivars Maro a leafy pea and Princess a semi-leafless pea. In the first part of the season water use was lower for sole maize but intercrops and sole pea used similar amounts of water. By 90 days after sowing, when peas had matured, all crops had used similar amounts of water. Maize had slightly greater water use efficiency than peas. Cultivars Nancis and Princess tended to have greater water use efficiency than Sophy and Maro respectively. Intercrops produced more dry matter than sole crops and therefore had consistently greater water use efficiencies.
Resumo:
A good working environment will help to provide the user with a good sense of wellbeing, inspiration and comfort. The main advantages of good environments is in terms of reduced upgrading investment, reduced sickness absence, an optimum level of productivity and improved overall satisfaction. Individuals respond very differently to their environments and research suggests a correlation between worker productivity and well-being, environmental, social and organisational factors. Research shows the occupants who report a high level of dissatisfaction about their job are usually the people who suffer more work and office environment related illnesses which affect their wellbeing, but not always so. Well-being expresses overall satisfaction. There is a connection between dissatisfied staff and low productivity; and a good sense of well-being is very important as it can lead to substantial productivity gain. If the environment is particularly bad people will be dissatisfied irrespective of job satisfaction. This paper describes research showing how environment affects productivity.
Resumo:
This paper examines the intellectual and professional contribution of comparative and international studies to the field of education. It explores the nature of the challenges that are currently being faced, and assesses its potential for the advancement of future teaching, research and professional development. Attention is paid to the place of comparative and international education (CIE)-past and present-in teacher education, in postgraduate studies, and in the realms of policy and practice, theory and research. Consideration is first given to the nature and history of CIE, to its initial contributions to the field of education in the UK, and to its chief mechanisms and sites of production. Influential methodological and theoretical developments are examined, followed by an exploration of emergent questions, controversies and dilemmas that could benefit from sustained comparative analysis in the future. Conclusions consider implications for the place of CIE in the future of educational studies as a whole; for relations between and beyond the 'disciplines of education'; and for the development of sustainable research capacity in this field.
Resumo:
Our aim was to determine whether meal fatty acids influence insulin and glucose responses to mixed meals and whether these effects can be explained by variations in postprandial NEFA and Apo, which regulate the metabolism of triacylglycerol-rich lipoproteins (Apo C and E). A single-blind crossover study examined the effects of single meals enriched in saturated fatty acids SFA), n-6 PUFA and MUFA on plasma metabolite and insulin responses. The triacylglycerol response following the PUFA meal showed a lower net incremental area under the curve than following the SFA and MUFA meals (P < 0.007). Compared with the SFA meal, the PUFA meal showed a lower net incremental area under the curve for the NEFA response from initial suppression to the end of the postprandial period (180-480 min; P < 0.02), and both PUFA and MUFA showed a lower net incremental glucose response (P < 0.02), although insulin concentrations were similar between meals. The pattern of the Apo E response was also different following the SFA meal (P < 0.02). There was a significant association between the net incremental NEFA (180-480 min) and glucose response (r(s)=0.409, P=0.025), and in multiple regression analysis the NEFA response accounted for 24 % of the variation in glucose response. Meal SFA have adverse effects on the postprandial glucose response that may be due to greater elevations in NEFA arising from differences in the metabolism of SFA- v. PUFA- and MUFA-rich lipoproteins. Elevated Apo E responses to high-SFA meals may have important implications for the hepatic metabolism of triacylglycerol-rich lipoproteins.
Resumo:
Background: Insulin sensitivity (Si) is improved by weight loss and exercise, but the effects of the replacement of saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) or carbohydrates of high glycemic index (HGI) or low glycemic index (LGI) are uncertain. Objective: We conducted a dietary intervention trial to study these effects in participants at risk of developing metabolic syndrome. Design: We conducted a 5-center, parallel design, randomized controlled trial [RISCK (Reading, Imperial, Surrey, Cambridge, and Kings)]. The primary and secondary outcomes were changes in Si (measured by using an intravenous glucose tolerance test) and cardiovascular risk factors. Measurements were made after 4 wk of a high-SFA and HGI (HS/HGI) diet and after a 24-wk intervention with HS/HGI (reference), high-MUFA and HGI (HM/HGI), HM and LGI (HM/LGI), low-fat and HGI (LF/HGI), and LF and LGI (LF/LGI) diets. Results: We analyzed data for 548 of 720 participants who were randomly assigned to treatment. The median Si was 2.7 × 10−4 mL · μU−1 · min−1 (interquartile range: 2.0, 4.2 × 10−4 mL · μU−1 · min−1), and unadjusted mean percentage changes (95% CIs) after 24 wk treatment (P = 0.13) were as follows: for the HS/HGI group, −4% (−12.7%, 5.3%); for the HM/HGI group, 2.1% (−5.8%, 10.7%); for the HM/LGI group, −3.5% (−10.6%, 4.3%); for the LF/HGI group, −8.6% (−15.4%, −1.1%); and for the LF/LGI group, 9.9% (2.4%, 18.0%). Total cholesterol (TC), LDL cholesterol, and apolipoprotein B concentrations decreased with SFA reduction. Decreases in TC and LDL-cholesterol concentrations were greater with LGI. Fat reduction lowered HDL cholesterol and apolipoprotein A1 and B concentrations. Conclusions: This study did not support the hypothesis that isoenergetic replacement of SFAs with MUFAs or carbohydrates has a favorable effect on Si. Lowering GI enhanced reductions in TC and LDL-cholesterol concentrations in subjects, with tentative evidence of improvements in Si in the LF-treatment group. This trial was registered at clinicaltrials.gov as ISRCTN29111298.
Resumo:
Background:Excessive energy intake and obesity lead to the metabolic syndrome (MetS). Dietary saturated fatty acids (SFAs) may be particularly detrimental on insulin sensitivity (SI) and on other components of the MetS. Objective:This study determined the relative efficacy of reducing dietary SFA, by isoenergetic alteration of the quality and quantity of dietary fat, on risk factors associated with MetS. Design:A free-living, single-blinded dietary intervention study. Subjects and Methods:MetS subjects (n=417) from eight European countries completed the randomized dietary intervention study with four isoenergetic diets distinct in fat quantity and quality: high-SFA; high-monounsaturated fatty acids and two low-fat, high-complex carbohydrate (LFHCC) diets, supplemented with long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) (1.2 g per day) or placebo for 12 weeks. SI estimated from an intravenous glucose tolerance test (IVGTT) was the primary outcome measure. Lipid and inflammatory markers associated with MetS were also determined. Results:In weight-stable subjects, reducing dietary SFA intake had no effect on SI, total and low-density lipoprotein cholesterol concentration, inflammation or blood pressure in the entire cohort. The LFHCC n-3 PUFA diet reduced plasma triacylglycerol (TAG) and non-esterified fatty acid concentrations (P<0.01), particularly in men. Conclusion:There was no effect of reducing SFA on SI in weight-stable obese MetS subjects. LC n-3 PUFA supplementation, in association with a low-fat diet, improved TAG-related MetS risk profiles.
Resumo:
Many environmental compounds with oestrogenic activity are measurable in the human breast and oestrogen is a known factor in breast cancer development. Exposure to environmental oestrogens occurs through diet, household products and cosmetics, but concentrations of single compounds in breast tissue are generally lower than needed for assayable oestrogenic responses. Results presented here and elsewhere demonstrate that in combination, chemicals can give oestrogenic responses at lower concentrations, which suggests that in the breast, low doses of many compounds could sum to give a significant oestrogenic stimulus. Updated incidence figures show a continued disproportionate incidence of breast cancer in Britain in the upper outer quadrant of the breast which is also the region to which multiple cosmetic chemicals are applied. CONCLUSION: If exposure to complex mixtures of oestrogenic chemicals in consumer products is a factor in breast cancer development, then a strategy for breast cancer prevention could become possible.