60 resultados para Enumeration of bacteria
Resumo:
The administration of probiotic bacteria as nutraceuticals is an area that has rapidly expanded in recent years, with a global market worth $32.6 billion predicted by 2014. Many of the health promoting claims attributed to these bacteria are dependent on the cells being both viable and sufficiently numerous in the intestinal tract. The oral administration of most bacteria results in a large loss of viability associated with passage through the stomach, which is attributed to the high acid and bile salt concentrations present. This loss of viability effectively lowers the efficacy of the administered supplement. The formulation of these probiotics into microcapsules is an emerging method to reduce cell death during GI passage, as well as an opportunity to control release of these cells across the intestinal tract. The majority of this technology is based on the immobilization of bacteria into a polymer matrix, which retains its structure in the stomach before degrading and dissolving in the intestine, unlike the diffusion based unloading of most controlled release devices for small molecules. This review shall provide an overview of progress in this field as well as draw attention to areas where studies have fallen short. This will be followed by a discussion of emerging trends in the field, highlighting key areas in which further research is necessary.
Resumo:
The effect of phase separation and batch duration on the trophic stages of anaerobic digestion was assessed for the first time in leach beds coupled to methanogenic reactors digesting maize (Zea mays). The system was operated for consecutive batches of 7, 14 and 28 days for ~120 days. Hydrolysis rate was higher the shorter the batch, reaching 8.5 gTSdestroyed d-1 in the 7-day system. Phase separation did not affect acidification but methanogenesis was enhanced in the short feed cycle leach beds. Phase separation was inefficient on the 7-day system, where ~89% of methane was produced in the leach bed. Methane production rate increased with shortening the feed cycle, reaching 3.523 l d-1 average in the 7-day system. Low strength leachate from the leach beds decreased methanogenic activity of methanogenic reactors’ sludges. Enumeration of cellulolytic and methanogenic microorganisms indicated a constant inoculation of leach beds and methanogenic reactors through leachate recirculation.
Resumo:
Whole-genome sequencing offers new insights into the evolution of bacterial pathogens and the etiology of bacterial disease. Staph- ylococcus aureus is a major cause of bacteria-associated mortality and invasive disease and is carried asymptomatically by 27% of adults. Eighty percent of bacteremias match the carried strain. How- ever, the role of evolutionary change in the pathogen during the progression from carriage to disease is incompletely understood. Here we use high-throughput genome sequencing to discover the genetic changes that accompany the transition from nasal carriage to fatal bloodstream infection in an individual colonized with meth- icillin-sensitive S. aureus. We found a single, cohesive population exhibiting a repertoire of 30 single-nucleotide polymorphisms and four insertion/deletion variants. Mutations accumulated at a steady rate over a 13-mo period, except for a cluster of mutations preceding the transition to disease. Although bloodstream bacteria differed by just eight mutations from the original nasally carried bacteria, half of those mutations caused truncation of proteins, including a prema- ture stop codon in an AraC-family transcriptional regulator that has been implicated in pathogenicity. Comparison with evolution in two asymptomatic carriers supported the conclusion that clusters of pro- tein-truncating mutations are highly unusual. Our results demon- strate that bacterial diversity in vivo is limited but nonetheless detectable by whole-genome sequencing, enabling the study of evolutionary dynamics within the host. Regulatory or structural changes that occur during carriage may be functionally important for pathogenesis; therefore identifying those changes is a crucial step in understanding the biological causes of invasive bacterial disease.
Resumo:
Isogenic mutants of Salmonella enteritidis defective for the elaboration of fimbrial types SEF14, SEF17, SEF21 and flagella were used to study the contribution these organelles made to colonization, invasion and lateral transfer in young chicks. The caecum, liver and spleen were colonized within 24 h following oral inoculation of 1-day-old chicks with 10(5) wild-type S. enteritidis strain LA5. However, for some mutants, the numbers of organisms recovered from internal organs was reduced significantly, particularly at 24 h post-inoculum, which supported the hypothesis that the organelles contribute to invasion and dissemination to internal organs. Specifically, mutations affecting SEF17, SEF21 and flagella contributed to a delay in colonization of the spleen, and those affecting SEF21 and flagella delayed colonization of the liver. Lower numbers of bacteria were recovered from the caecum with mutants deficient in elaboration of SEF21. Sentinel birds were colonized by LA5 or EAV40 (14(-), 17(-), 21(-), fla(-)) directly from the environment within 2 days, although a consistent slight delay was observed with the multiple mutant. Overall, our data suggest a collective role for SEF17, SEF21 and flagella, but not SEF14, in the early stages of colonization and invasion of young chicks by S. enteritidis, but these surface appendages appear unnecessary for colonization of birds from their immediate environment.
Resumo:
To understand the role of flagella and fimbriae of Escherichia coli O78:K80 in avian colibacillosis, day-old chicks were dosed orally with defined afimbriate and or aflagellate mutants and colonization, invasion and persistence compared with that of the wild-type. In an invasion model, chicks were dosed with 1 x 10(5) c.f.u. of a single strain and mutants defective for type 1 fimbriae, curli fimbriae or flagella colonized livers by 24 h although the numbers of bacteria present were significantly less than the wild-type, Mutants colonized between 50 and 75 % of spleens whereas the wild-type colonized 100 % of spleens. Additionally, the numbers of mutant bacteria in colonized spleens were significantly less than the wild-type. Surprisingly, mutants defective for the elaboration of more than one appendage were no more attenuated than single mutants. In a persistence model, chicks were dosed with 1 x 10(2) c.f.u. of a single strain and mutants defective for type 1 or curli or flagella or any combination thereof persisted as assessed by cloacal swabbing for 5 weeks of the experiment less well than the wild-type. In an additional persistence model, chicks were dosed with 5 x 10(2) c.f.u. of each of wild-type and one mutant together. All mutants were significantly less persistent than the wild-type (P < 0.001) and one mutant which lacked type 1, curli and flagella, was eliminated within 2 weeks. Analysis of the trends of elimination indicated that flagella contributed to persistence more than curli, which contributed more than type 1 fimbriae. Here was evidence for a major role in colonization, invasion and persistence played by type 1, curli and flagella.
Resumo:
The virulence of a Salmonella enterica serovar Typhimurium DT014 strain in which marA was insertionally inactivated was compared to its isogenic parent in vitro and in vivo. In vitro, the numbers of the marA mutant phagocytosed by porcine lung macrophages were significantly increased, while survival at 24 h inside macrophages and adherence to human gut cells were significantly reduced in comparison with the parent strain. In vivo, the marA inactivated strain, in competition with its parent strain, persisted for a shorter period in chickens, was present in the caeca at significantly lower levels and invaded the deeper organs to a significantly lesser extent. Therapeutic antibiotic treatment of one group of chickens with oxytetracycline favoured the persistence of both the parent strain and, to a lesser extent, the marA inactivated strain; but interestingly, increased tetracycline resistance of Salmonella isolates after treatment of birds with antibiotic was seen only for the parent strain. Further work is needed to elucidate how mar is involved in virulence and if its inactivation can minimise the ability of bacteria to become antibiotic-resistant in vivo.
Resumo:
Escherichia coli O157:H7 is a zoonotic pathogen that can express a type III secretion system (TTSS) considered important for colonization and persistence in ruminants. E. coli O157:H7 strains have been shown to vary markedly in levels of protein secreted using the TTSS and this study has confirmed that a high secretion phenotype is more prevalent among isolates associated with human disease than isolates shed by healthy cattle. The variation in secretion levels is a consequence of heterogeneous expression, being dependent on the proportion of bacteria in a population that are actively engaged in protein secretion. This was demonstrated by indirect immunofluorescence and eGFP fusions that examined the expression of locus of enterocyte effacement (LEE)-encoded factors in individual bacteria. In liquid media, the expression of EspA, tir::egfp, intimin, but not map::egfp were co-ordinated in a subpopulation of bacteria. In contrast to E. coli O157:H7, expression of tir::egfp in EPEC E2348/69 was equivalent in all bacteria although the same fusion exhibited variable expression when transformed into an E. coli O157:H7 background. An E. coli O157:H7 strain deleted for the LEE demonstrated weak but variable expression of tir::egfp indicating that the elements controlling the heterogeneous expression lie outside the LEE. The research also demonstrated the rapid induction of tir::egfp and map::egfp on contact with bovine epithelial cells. This control in E. coli O157:H7 may be required to limit exposure of key surface antigens, EspA, Tir and intimin during colonization of cattle but allow their rapid production on contact with bovine gastrointestinal epithelium at the terminal rectum.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) strains comprise a broad group of bacteria, some of which cause attaching and effacing (AE) lesions and enteritis in humans and animals. Non-O157:H7 EHEC strains contain the gene efa-1 (referred to in previous publications as efa1), which influences adherence to cultured epithelial cells. An almost identical gene in enteropathogenic E. coli (lifA) mediates the inhibition of lymphocyte proliferation and proinflammatory cytokine synthesis. We have shown previously that significantly lower numbers of EHEC 05 and 0111 efa-1 mutants are shed in feces following experimental infection in calves and that these mutants exhibit reduced adherence to intestinal epithelia compared with isogenic wild-type strains. E. coli O157:H7 strains lack efa-1 but encode a homolog on the pO157 plasmid (toxB/l7095) and contain a truncated version of the efa-1 gene (efa-1'/z4332 in O island 122 of the EDL933 chromosome). Here we report that E. coli O157:H7 toxB and efa-1' single and double mutants exhibit reduced adherence to cultured epithelial cells and show reduced expression and secretion of proteins encoded by the locus of enterocyte effacement (LEE), which plays a key role in the host-cell interactions of EHEC. The activity of LEE1, LEE4, and LEE5 promoters was not significantly altered in E. coli O157:H7 strains harboring toxB or efa-1' mutations, indicating that the effect on the expression of LEE-encoded secreted proteins occurs at a posttranscriptional level. Despite affecting type III secretion, mutation of toxB and efa-1' did not significantly affect the course of fecal shedding of E. coli O157:H7 following experimental inoculation of 10- to 14-day-old calves or 6-week-old sheep. Mutation of tir caused a significant reduction in fecal shedding of E. coli O157:H7 in calves, indicating that the formation of AE lesions is important for colonization of the bovine intestine.
Resumo:
There is growing evidence that a number of oral Treponema species, in particular Treponema denticola, are associated with the progression of human periodontal disease. The major sheath (or surface) protein (Msp) of T. denticola is implicated in adhesion of bacteria to host cells and tissue proteins and is likely to be an important virulence factor. However, the binding regions of the Msp are not known. We have purified from Escherichia coli recombinant Msp (rMsp) polypeptides corresponding to the following: full-length Msp (rMsp) minus 13 N-terminal amino acid (aa) residues, an amino-terminal fragment (rN-Msp, 189 aa residues), a 57-aa residue segment from the central region (rV-Msp), and a C-terminal fragment (rC-Msp, 272 aa residues). rMsp (530 aa residues) bound to immobilized fibronectin, keratin, laminin, collagen type 1, fibrinogen, hyaluronic acid, and heparin. The N- and V-region polypeptides, but not rC-Msp, also bound to these substrates. Binding of rMsp to fibronectin was targeted to the N-terminal heparin I/fibrin I domain. Antibodies to the N-region or V-region polypeptides, but not antibodies to the rC-Msp fragment, blocked adhesion of T. denticola ATCC 35405 cells to a range of host protein molecules. These results suggest that the N-terminal half of Msp carries epitopes that are surface exposed and that are involved in mediating adhesion. Binding of rMsp onto the cell surface of low-level fibronectin-binding Treponema isolates conferred a 10-fold increase in fibronectin binding. This confirms that Msp functions autonomously as an adhesin and raises the possibility that phenotypic complementation of virulence functions might occur within mixed populations of Treponema species.
Resumo:
Four conventionally reared goats aged 6 days were inoculated orally with approximately 10(10) colony-forming units (cfu) of a non-verotoxigenic strain of Escherichia coli O157:H7. All remained clinically normal. Tissues were sampled under terminal anaesthesia at 24 (two animals), 48 and 72 h post-inoculation (hpi). E. coli O157:H7 was cultured from the ileum, caecum, colon and rectum of all animals, but the number of bacteria recovered at these sites varied between animals. Attaching-effacing (AE) lesions associated with O157 organisms, as confirmed by immunolabelling, were observed in the ileum of one of the two animals examined at 24 hpi, and in the ileum, caecum and proximal colon of an animal examined at 72 hpi. E. coliO157 organisms were detected at > 105 cfu/g of tissue at these sites. In addition, A-E lesions associated with unidentified bacteria were observed at various sites in the large bowel of the same animals. Lesions containing both E. coliO157 and unidentified bacteria (non-O157) were not observed. Non-O157 AE lesions were also observed in the large bowel of one of two uninoculated control animals. This indicated that three (one control and two inoculated) animals were colonized with an unidentified AE organism before the commencement of the experiment. The O157-associated AE lesions were observed only in animals colonized by non-O157 AE organisms and this raises questions about individual host susceptibility to AE lesions and whether non-O157 AE organisms influence colonization by E. coli O157.
Resumo:
We hypothesized that higher doses of fluoroquinolones for a shorter duration could maintain efficacy (as measured by reduction in bacterial count) while reducing selection in chickens of bacteria with reduced susceptibility. Chicks were infected with Salmonella enterica serovar Typhimurium DT104 and treated 1 week later with enrofloxacin at the recommended dose for 5 days (water dose adjusted to give 10 mg/kg of body weight of birds or equivalence, i.e., water at 50 ppm) or at 2.5 or 5 times the recommended dose for 2 days or 1 day, respectively. The dose was delivered continuously (ppm) or pulsed in the water (mg/kg) or by gavage (mg/kg). In vitro in sera, increasing concentrations of 0.5 to 8 mu g/ml enrofloxacin correlated with increased activity. In vivo, the efficacy of the 1-day treatment was significantly less than that of the 2- and 5-day treatments. The 2-day treatments showed efficacy similar to that of the 5-day treatment in all but one repeat treatment group and significantly (P < 0.01) reduced the Salmonella counts. Dosing at 2.5x the recommended dose and pulsed dosing both increased the peak antibiotic concentrations in cecal contents, liver, lung, and sera as determined by high-pressure liquid chromatography. There was limited evidence that shorter treatment regimens (in particular the 1-day regimen) selected for fewer strains with reduced susceptibility. In conclusion, the 2-day treatment would overall require a shorter withholding time than the 5-day treatment and, in view of the increased peak antibiotic concentrations, may give rise to improved efficacy, in particular for treating respiratory and systemic infections. However, it would be necessary to validate the 2-day regimen in a field situation and in particular against respiratory and systemic infections to validate or refute this hypothesis.
Resumo:
Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H2O2via the action of added metal(II) ions. H2O2 generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin–iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.
Resumo:
Metabolic syndrome is a set of disorders that increases the risk of developing cardiovascular disease. The gut microbiota is altered toward a less beneficial composition in overweight adults and this change can be accompanied by inflammation. Prebiotics such as galactooligosaccharides can positively modify the gut microbiota and immune system; some may also reduce blood lipids. We assessed the effect of a galactooligosaccharide mixture [Bi2 muno (B-GOS)] on markers of metabolic syndrome, gut microbiota, and immune function in 45 overweight adults with $3 risk factors associated with metabolic syndrome in a double-blind, randomized, placebo (maltodextrin)-controlled, crossover study (with a 4-wk wash-out period between interventions). Whole blood, saliva, feces, and anthropometric measurements were taken at the beginning, wk 6, and end of each 12-wk intervention period. Predominant groups of fecal bacteria were quantified and full blood count, markers of inflammation and lipid metabolism, insulin, and glucose were measured. B-GOS increased the number of fecal bifidobacteria at the expense of less desirable groups of bacteria. Increases in fecal secretory IgA and decreases in fecal calprotectin, plasma C-reactive protein, insulin, total cholesterol (TC), TG, and the TC:HDL cholesterol ratio were also observed. Administration of B-GOS to overweight adults resulted in positive effects on the composition of the gut microbiota, the immune response, and insulin, TC, and TG concentrations. B-GOSmay be a useful candidate for the enhancement of gastrointestinal health, immune function, and the reduction of metabolic syndrome risk factors in overweight adults.
Resumo:
The response of nitrification potentials, denitrification potentials, and N removal efficiency to the introduction of earthworms and wetland plants in a vertical flow constructed wetland system was investigated. Addition of earthworms increased nitrification and denitrification potentials of substrate in non-vegetated constructed wetland by 236% and 8%, respectively; it increased nitrification and denitrification potentials in rhizosphere in vegetated constructed wetland (Phragmites austrail, Typha augustifolia and Canna indica), 105% and 5%, 187% and 12%, and 268% and 15% respectively. Denitrification potentials in rhizosphere of three wetland plants were not significantly different, but nitrification potentials in rhizosphere followed the order of C. indica > T. augustifolia > P. australis when addition of earthworms into constructed wetland. Addition of earthworms to the vegetated constructed significantly increased the total number of bacteria and fungi of substrates (P < 0.05). The total number of bacteria was significantly correlated with nitrification potentials (r = 913, P < 0.01) and denitrification potentials (r = 840, P < 0.01), respectively. The N concentration of stems and leaves of C. indica were significantly higher in the constructed wetland with earthworms (P < 0.05). Earthworms had greater impact on nitrification potentials than denitrification potentials. The removal efficiency of N was improved via stimulated nitrification potentials by earthworms and higher N uptake by wetland plants.
Resumo:
With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intenstity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans.