97 resultados para Energy systems optimisation
Resumo:
Inelastic neutron scattering spectroscopy has been used to observe and characterise hydrogen on the carbon component of a Pt/C catalyst. INS provides the complete vibration spectrum of coronene, regarded as a molecular model of a graphite layer. The vibrational modes are assigned with the aid of ab initio density functional theory calculations and the INS spectra by the a-CLIMAX program. A spectrum for which the H modes of coronene have been computationally suppressed, a carbon-only coronene spectrum, is a better representation of the spectrum of a graphite layer than is coronene itself. Dihydrogen dosing of a Pt/C catalyst caused amplification of the surface modes of carbon, an effect described as H riding on carbon. From the enhancement of the low energy carbon modes (100-600 cm(-1)) it is concluded that spillover hydrogen becomes attached to dangling bonds at the edges of graphitic regions of the carbon support. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Attempts to reduce the energy consumed in UK homes have met with limited success. One reason for this is a lack of understanding of how people interact with domestic technology – heating systems, lights, electrical equipment and so forth. Attaining such an understanding is hampered by a chronic shortage of detailed energy use data matched to descriptions of the house, the occupants, the internal conditions and the installed services and appliances. Without such information it is impossible to produce transparent and valid models for understanding and predicting energy use. The Carbon Reduction in Buildings (CaRB) consortium of five UK universities plans to develop socio-technical models of energy use, underpinned by a flow of data from a longitudinal monitoring campaign involving several hundred UK homes. This paper outlines the models proposed, the preliminary monitoring work and the structure of the proposed longitudinal study.
Resumo:
Climate change is one of the major challenges facing economic systems at the start of the 21st century. Reducing greenhouse gas emissions will require both restructuring the energy supply system (production) and addressing the efficiency and sufficiency of the social uses of energy (consumption). The energy production system is a complicated supply network of interlinked sectors with 'knock-on' effects throughout the economy. End use energy consumption is governed by complex sets of interdependent cultural, social, psychological and economic variables driven by shifts in consumer preference and technological development trajectories. To date, few models have been developed for exploring alternative joint energy production-consumption systems. The aim of this work is to propose one such model. This is achieved in a methodologically coherent manner through integration of qualitative input-output models of production, with Bayesian belief network models of consumption, at point of final demand. The resulting integrated framework can be applied either (relatively) quickly and qualitatively to explore alternative energy scenarios, or as a fully developed quantitative model to derive or assess specific energy policy options. The qualitative applications are explored here.
Resumo:
This article presents a prototype model based on a wireless sensor actuator network (WSAN) aimed at optimizing both energy consumption of environmental systems and well-being of occupants in buildings. The model is a system consisting of the following components: a wireless sensor network, `sense diaries', environmental systems such as heating, ventilation and air-conditioning systems, and a central computer. A multi-agent system (MAS) is used to derive and act on the preferences of the occupants. Each occupant is represented by a personal agent in the MAS. The sense diary is a new device designed to elicit feedback from occupants about their satisfaction with the environment. The roles of the components are: the WSAN collects data about physical parameters such as temperature and humidity from an indoor environment; the central computer processes the collected data; the sense diaries leverage trade-offs between energy consumption and well-being, in conjunction with the agent system; and the environmental systems control the indoor environment.
Resumo:
The content of this paper is a snapshot of a current project looking at producing a real-time sensor-based building assessment tool, and a system that personalises workspaces using multi-agent technology. Both systems derive physical environment information from a wireless sensor network that allows clients to subscribe to real-time sensed data. The principal ideologies behind this project are energy efficiency and well-being of occupants; in the context of leveraging the current state-of-the-art in agent technology, wireless sensor networks and building assessment systems to enable the optimisation and assessment of buildings. Participants of this project are from both industry (construction and research) and academia.
Resumo:
Very large scale scheduling and planning tasks cannot be effectively addressed by fully automated schedule optimisation systems, since many key factors which govern 'fitness' in such cases are unformalisable. This raises the question of an interactive (or collaborative) approach, where fitness is assigned by the expert user. Though well-researched in the domains of interactively evolved art and music, this method is as yet rarely used in logistics. This paper concerns a difficulty shared by all interactive evolutionary systems (IESs), but especially those used for logistics or design problems. The difficulty is that objective evaluation of IESs is severely hampered by the need for expert humans in the loop. This makes it effectively impossible to, for example, determine with statistical confidence any ranking among a decent number of configurations for the parameters and strategy choices. We make headway into this difficulty with an Automated Tester (AT) for such systems. The AT replaces the human in experiments, and has parameters controlling its decision-making accuracy (modelling human error) and a built-in notion of a target solution which may typically be at odds with the solution which is optimal in terms of formalisable fitness. Using the AT, plausible evaluations of alternative designs for the IES can be done, allowing for (and examining the effects of) different levels of user error. We describe such an AT for evaluating an IES for very large scale planning.
Resumo:
Wireless sensor networks (WSNs) have been widely used in pervasive systems such as intelligent buildings. As a vital factor of product cost, energy consuming in WSN has been focused upon, but only via energy harvesting can the problem be overcome radically. This article presents a new approach to harvesting electromagnetic energy for WSN from useless radio frequency (RF) signals transmitted in WSN, with a quantitative analysis showing its feasibility.
Resumo:
The content of this paper is a snapshot of a current project looking at producing a real-time sensor-based building assessment tool, and a system that personalises work-spaces using multi-agent technology. Both systems derive physical environment information from a wireless sensor network that allows clients to subscribe to real-time sensed data. The principal ideologies behind this project are energy efficiency and well-being of occupants; in the context of leveraging the current state-of-the-art in agent technology, wireless sensor networks and building assessment systems to enable the optimisation and assessment of buildings. Participants of this project are from both industry (construction and research) and academia.
Nonlinear system identification using particle swarm optimisation tuned radial basis function models
Resumo:
A novel particle swarm optimisation (PSO) tuned radial basis function (RBF) network model is proposed for identification of non-linear systems. At each stage of orthogonal forward regression (OFR) model construction process, PSO is adopted to tune one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is often more efficient in model construction. The effectiveness of the proposed PSO aided OFR algorithm for constructing tunable node RBF models is demonstrated using three real data sets.
Resumo:
Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.
Resumo:
People's interaction with the indoor environment plays a significant role in energy consumption in buildings. Mismatching and delaying occupants' feedback on the indoor environment to the building energy management system is the major barrier to the efficient energy management of buildings. There is an increasing trend towards the application of digital technology to support control systems in order to achieve energy efficiency in buildings. This article introduces a holistic, integrated, building energy management model called `smart sensor, optimum decision and intelligent control' (SMODIC). The model takes into account occupants' responses to the indoor environments in the control system. The model of optimal decision-making based on multiple criteria of indoor environments has been integrated into the whole system. The SMODIC model combines information technology and people centric concepts to achieve energy savings in buildings.
Resumo:
State-of-the-art computational methodologies are used to investigate the energetics and dynamics of photodissociated CO and NO in myoglobin (Mb···CO and Mb···NO). This includes the combination of molecular dynamics, ab initio MD, free energy sampling, and effective dynamics methods to compare the results with studies using X-ray crystallography and ultrafast spectroscopy metho ds. It is shown that modern simulation techniques along with careful description of the intermolecular interactions can give quantitative agreement with experiments on complex molecular systems. Based on this agreement predictions for as yet uncharacterized species can be made.
Resumo:
The efficiency of energy utilisation in cattle is a determinant of the profitability of milk and beef production, as well as their environmental impact. At an animal level, meat and milk production by ruminants is less efficient than pig and poultry production, in part due to lower digestibility of forages compared with grains. However, when compared on the basis of human-edible inputs, the ruminant has a clear efficiency advantage. There has been recent interest in feed conversion efficiency (FCE) in dairy cattle and residual feed intake, an indicator of FCE, in beef cattle. Variation between animals in FCE may have genetic components, allowing selection for animals with greater efficiency and reduced environmental impact. A major source of variation in FCE is feed digestibility, and thus approaches that improve digestibility should improve FCE if rumen function is not disrupted. Methane represents a substantial loss of digestible energy from rations. Major determinants of methane emission are the amount of feed consumed and the proportions of forage and concentrates fed. In addition, feeding fat has long been known to reduce methane emission. A myriad of other supplements and additives are currently being investigated as mitigators of methane emission, but in many cases compounds effective in sheep are ineffective in lactating dairy cows. Ultimately, the adoption of ‘best practice’ in diet formulation and management may be the most effective option for reducing methane. In assessing the efficiency of energy use for milk and meat production by cattle, and their environmental impact, it is imperative that comparisons be made at a systems level, and that the wider social and economic implications of mitigation policy are considered.