48 resultados para Energy efficient optical wireless


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mirror lightpipes are useful for providing healthy and energy-efficient daylight into buildings where windows and skylights are unsuitable, insufficient or generate too much heat gain. The lightpipes have been installed in dozens of buildings in the UK. Field monitoring has been carried out to assess their performance in four different buildings: the headquaters of a major insurance company, a health clinic, a residential building and a college dining hall In those cases where lighipipes with moderate aspect ratios were installed, good illuminance of up to 450 lux has been obtained with internal/external illuminance ratios around 1%. When long and narrow lightpipes with many bends are used, however, the ratio reduced to around 0.1%. These results showed that lightpipes can be effective daylighting devices provided that excessive aspect ratios and numbers of bends are avoided. Lightpipes with larger diameters should be used whenever possible. The lightpipes often improved signiScantly the visual quality af the interior environment, and high user satisfaction was found even in buildings where a relatively low level of daylight was admitted through the lightpipes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the evidence in favour of the compact city and considers whether it is a viable policy option. Environmentalists, acadenics and politicians have all expressed strong support for the compact city as a basis for sustainable development. A review of the literature broadly confirms the claims made on its behalf, in particular that it is energy efficient and that it plays a crucial role in preventing rural land loss. It is further shown i) that there is nothing inevitable about the established pattern of urban dispersal, and ii) that although urban land is charaterised by a number of contstraints on development,it could in principle satisfy much of the projected demand for housing. Yet urban sprawl continues. Some of the reasons for this in the case of residential development are examined by comparing the residential development process with the principles of sustainable development. The general conclusion of the paper is that proposals for urban containment are likely to be strongly resisted by housebuilders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct outdoor air cooling contributes a lot not only to the improvement of the indoor air quality but also to the energy saving. Its full use will reduce the water chiller’s running time especially in some stores where cooling load keeps much higher and longer than that in other buildings. A novel air-conditioning system named Combined Variable Air Volume system (CVAV), combining a normal AHU with a separate outdoor air supply system, was proposed firstly by the authors. The most attractive feature of the system is its full utilization of cooling capacity and freshness of outdoor air in the transition period of the year round. On the basis of the obtain of the dynamic cooling loads of the typical shopping malls in different four cities located in cold climates in China with the aid of DOE-2, the possibility of increasing the amount of outdoor air volume of CVAV system in the transition period instead of operating the water chillers was confirmed. Moreover, a new concept, Direct Outdoor Air Cooling Efficiency (DOACE), was defined as the ratio of cooling capacity of outdoor air to the water chiller, indicating the degree of outdoor air’s utilization. And the DOACE of the CVAV was calculated and compared with that of conventional all-air constant volume air-conditioning systems, the results showed that CVAV bear much more energy saving potential with the 10%~19% higher DOACE and it is a kind of energy efficient systems and can improve the indoor air quality as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the global market potential of solar thermal, photovoltaic (PV) and combined photovoltaic/thermal (PV/T) technologies in current time and near future was discussed. The concept of the PV/T and the theory behind the PV/T operation were briefly introduced, and standards for evaluating technical, economic and environmental performance of the PV/T systems were addressed. A comprehensive literature review into R&D works and practical application of the PV/T technology was illustrated and the review results were critically analysed in terms of PV/T type and research methodology used. The major features, current status, research focuses and existing difficulties/barriers related to the various types of PV/T were identified. The research methods, including theoretical analyses and computer simulation, experimental and combined experimental/theoretical investigation, demonstration and feasibility study, as well as economic and environmental analyses, applied into the PV/T technology were individually discussed, and the achievement and problems remaining in each research method category were described. Finally, opportunities for further work to carry on PV/T study were identified. The review research indicated that air/water-based PV/T systems are the commonly used technologies but their thermal removal effectiveness is lower. Refrigerant/heat-pipe-based PV/Ts, although still in research/laboratory stage, could achieve much higher solar conversion efficiencies over the air/water-based systems. However, these systems were found a few technical challenges in practice which require further resolutions. The review research suggested that further works could be undertaken to (1) develop new feasible, economic and energy efficient PV/T systems; (2) optimise the structural/geometrical configurations of the existing PV/T systems; (3) study long term dynamic performance of the PV/T systems; (4) demonstrate the PV/T systems in real buildings and conduct the feasibility study; and (5) carry on advanced economic and environmental analyses. This review research helps finding the questions remaining in PV/T technology, identify new research topics/directions to further improve the performance of the PV/T, remove the barriers in PV/T practical application, establish the standards/regulations related to PV/T design and installation, and promote its market penetration throughout the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Almost all modern cars can be controlled remotely using a personal communicator (keyfob). However, the degree of interaction between currently available personal communicators and cars is very limited. The communication link is unidirectional and the communication range is limited to a few dozen meters. However, there are many interesting applications that could be supported if a keyfob would be able to support energy efficient bidirectional longer range communication. In this paper we investigate off-the-shelf transceivers in terms of their usability for bidirectional longer range communication. Our evaluation results show that existing transceivers can generally support the required communication ranges but that links tend to be very unreliable. This high unreliability must be handled in an energy efficient way by the keyfob to car communication protocol in order to make off-the-shelf transceivers a viable solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing for indoor thermal environmental conditions is one of the key elements in the energy efficient building design process. This paper introduces a development of the Chinese national Evaluation Standard for indoor thermal environments (Evaluation Standard). International standards including the ASHRAE55, ISO7730, DIN EN, and CIBSE Guide-A have been reviewed and referenced for the development of the Evaluation Standard. In addition, over 28,000 subjects participated in the field study from different climate zones in China and over 500 subjects have been involved in laboratory studies. The research findings reveal that there is a need to update the Chinese thermal comfort standard based on local climates and people's habitats. This paper introduces in detail the requirements for the thermal environment for heated and cooled buildings and free-running buildings in China.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The United Kingdom is committed to a raft of requirements to create a low-carbon economy. Buildings consume approximately 40% of UK energy demand. Any improvement on the energy performance of buildings therefore can significantly contribute to the delivery of a low-carbon economy. The challenge for the construction sector and its clients is how to meet the policy requirements to deliver low and zero carbon (LZC) buildings, which spans broader than the individual building level, to requirements at the local and regional levels, and wider sustainability pressures. Further, the construction sector is reporting skills shortages coupled with the need for ‘new skills’ for the delivery of LZC buildings. The aim of this paper is to identify, and better understand, the skills required by the construction sector and its clients for the delivery of LZC buildings within a region. The theoretical framing for this research is regional innovation system (RIS) using a socio-technical network analysis (STNA) methodology. A case study of a local authority region is presented. Data is drawn from a review of relevant local authority documentation, observations and semi-structured interviews from one (project 1) of five school retrofit projects within the region. The initial findings highlight the complexity surrounding the form and operation of the LZC network for project 1. The skills required by the construction sector and its clients are connected to different actor roles surrounding the delivery of the project. The key actors involved and their required skills are: project management and energy management skills required by local authority; project management skills (in particular project planning), communication and research skills required by school end-users; and a ‘technical skill’ relating to knowledge of a particular energy efficient measure (EEM) and use of equipment to implement the EEM is required by the EEM contractors.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Environment monitoring applications using Wireless Sensor Networks (WSNs) have had a lot of attention in recent years. In much of this research tasks like sensor data processing, environment states and events decision making and emergency message sending are done by a remote server. A proposed cross layer protocol for two different applications where, reliability for delivered data, delay and life time of the network need to be considered, has been simulated and the results are presented in this paper. A WSN designed for the proposed applications needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from source nodes to the sink. A cross layer based on the design given in [1] has been extended and simulated for the proposed applications, with new features, such as routes discovery algorithms added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optical data are compared with EISCAT radar observations of multiple Naturally Enhanced Ion-Acoustic Line (NEIAL) events in the dayside cusp. This study uses narrow field of view cameras to observe small-scale, short-lived auroral features. Using multiple-wavelength optical observations, a direct link between NEIAL occurrences and low energy (about 100 eV) optical emissions is shown. This is consistent with the Langmuir wave decay interpretation of NEIALs being driven by streams of low-energy electrons. Modelling work connected with this study shows that, for the measured ionospheric conditions and precipitation characteristics, growth of unstable Langmuir (electron plasma) waves can occur, which decay into ion-acoustic wave modes. The link with low energy optical emissions shown here, will enable future studies of the shape, extent, lifetime, grouping and motions of NEIALs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents a prototype model based on a wireless sensor actuator network (WSAN) aimed at optimizing both energy consumption of environmental systems and well-being of occupants in buildings. The model is a system consisting of the following components: a wireless sensor network, `sense diaries', environmental systems such as heating, ventilation and air-conditioning systems, and a central computer. A multi-agent system (MAS) is used to derive and act on the preferences of the occupants. Each occupant is represented by a personal agent in the MAS. The sense diary is a new device designed to elicit feedback from occupants about their satisfaction with the environment. The roles of the components are: the WSAN collects data about physical parameters such as temperature and humidity from an indoor environment; the central computer processes the collected data; the sense diaries leverage trade-offs between energy consumption and well-being, in conjunction with the agent system; and the environmental systems control the indoor environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power delivery for biomedical implants is a major consideration in their design for both measurement and stimulation. When performed by a wireless technique, transmission efficiency is critically important not only because of the costs associated with any losses but also because of the nature of those losses, for example, excessive heat can be uncomfortable for the individual involved. In this study, a method and means of wireless power transmission suitable for biomedical implants are both discussed and experimentally evaluated. The procedure initiated is comparable in size and simplicity to those methods already employed; however, some of Tesla’s fundamental ideas have been incorporated in order to obtain a significant improvement in efficiency. This study contains a theoretical basis for the approach taken; however, the emphasis here is on practical experimental analysis

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power delivery for biomedical implants is a major consideration in their design for both measurement and stimulation. When performed by a wireless technique, transmission efficiency is critically important not only because of the costs associated with any losses but also because of the nature of those losses, for example, excessive heat can be uncomfortable for the individual involved. In this study, a method and means of wireless power transmission suitable for biomedical implants are both discussed and experimentally evaluated. The procedure initiated is comparable in size and simplicity to those methods already employed; however, some of Tesla’s fundamental ideas have been incorporated in order to obtain a significant improvement in efficiency. This study contains a theoretical basis for the approach taken; however, the emphasis here is on practical experimental analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, A cross layer based on the modified versions of APTEEN and GinMAC has been designed and implemented, with new features, such as a mobility module and routes discovery algorithms have been added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability for the proposed healthcare application.