36 resultados para Embedded robotics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft skin artefacts made of knitted nylon reinforced silicon rubber were fabricated mimicking octopus skin. A combination of ecoflex 0030 and 0010 were used as matrix of the composite to obtain the right stiffness for the skin artefacts. Material properties were characterised using static uniaxial tension and scissors cutting tests. Two types of tactile sensors were developed to detect normal contact; one used quantum tunnelling composite materials and the second was fabricated from silicone rubber and a conductive textile. Sensitivities of the sensors were tested by applying different modes of loading and the soft sensors were incorporated into the skin prototype. Passive suckers were developed and tested against squid suckers. An integrated skin prototype with embedded deformable sensors and attached suckers developed for the arm of an octopus inspired robot is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Idealised convection-permitting simulations are used to quantify the impact of embedded convection on the precipitation generated by moist flow over midlatitude mountain ridges. A broad range of mountain dimensions and moist stabilities are considered to encompass a spectrum of physically plausible flows. The simulations reveal that convection only enhances orographic precipitation in cap clouds that are otherwise unable to efficiently convert cloud condensate into precipitate. For tall and wide mountains (e.g. the Washington Cascades or the southern Andes), precipitate forms efficiently through vapour deposition and collection, even in the absence of embedded convection. When embedded convection develops in such clouds, it produces competing effects (enhanced condensation in updraughts and enhanced evaporation through turbulent mixing and compensating subsidence) that cancel to yield little net change in precipitation. By contrast, convection strongly enhances precipitation over short and narrow mountains (e.g. the UK Pennines or the Oregon Coastal Range) where precipitation formation is otherwise highly inefficient. Although cancellation between increased condensation and evaporation still occurs, the enhanced precipitation formation within the convective updraughts leads to a net increase in precipitation efficiency. The simulations are physically interpreted through non-dimensional diagnostics and relevant time-scales that govern advective, microphysical, and convective processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robotics is a key theme in many of the degrees offered in Systems Engineering. The topic has proved useful in attracting students to the University, and it also provides the basis of much practical and project work throughout the degrees. This paper focuses on one aspect, a Part 2 project in which students doing various degrees work together to develop a mobile robot which is controlled remotely to navigate an environment and perform specific tasks. In addition to providing practical experience of relevant academic topics, this project helps to contribute to key teaching and learning priorities including problem based learning, motivation and important employability skills.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel analytical model for mixed-phase, unblocked and unseeded orographic precipitation with embedded convection is developed and evaluated. The model takes an idealised background flow and terrain geometry, and calculates the area-averaged precipitation rate and other microphysical quantities. The results provide insight into key physical processes, including cloud condensation, vapour deposition, evaporation, sublimation, as well as precipitation formation and sedimentation (fallout). To account for embedded convection in nominally stratiform clouds, diagnostics for purely convective and purely stratiform clouds are calculated independently and combined using weighting functions based on relevant dynamical and microphysical time scales. An in-depth description of the model is presented, as well as a quantitative assessment of its performance against idealised, convection-permitting numerical simulations with a sophisticated microphysics parameterisation. The model is found to accurately reproduce the simulation diagnostics over most of the parameter space considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the first derived thermo-optical properties for vacuum deposited infrared thin films embedded in multilayers. These properties were extracted from the temperature-dependence of manufactured narrow bandpass filters across the 4-17 µm mid-infrared wavelength region. Using a repository of spaceflight multi-cavity bandpass filters, the thermo-optical expansion coefficients of PbTe and ZnSe were determined across an elevated temperature range 20-160 ºC. Embedded ZnSe films showed thermo-optical properties similar to reported bulk values, whilst the embedded PbTe films of lower optical density, deviate from reference literature sources. Detailed knowledge of derived coefficients is essential to the multilayer design of temperature-invariant narrow bandpass filters for use in non-cooled infrared detection systems. We further present manufacture of the first reported temperature-invariant multi-cavity narrow bandpass filter utilizing PbS chalcogenide layer material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel mobile sink area allocation scheme for consumer based mobile robotic devices with a proven application to robotic vacuum cleaners. In the home or office environment, rooms are physically separated by walls and an automated robotic cleaner cannot make a decision about which room to move to and perform the cleaning task. Likewise, state of the art cleaning robots do not move to other rooms without direct human interference. In a smart home monitoring system, sensor nodes may be deployed to monitor each separate room. In this work, a quad tree based data gathering scheme is proposed whereby the mobile sink physically moves through every room and logically links all separated sub-networks together. The proposed scheme sequentially collects data from the monitoring environment and transmits the information back to a base station. According to the sensor nodes information, the base station can command a cleaning robot to move to a specific location in the home environment. The quad tree based data gathering scheme minimizes the data gathering tour length and time through the efficient allocation of data gathering areas. A calculated shortest path data gathering tour can efficiently be allocated to the robotic cleaner to complete the cleaning task within a minimum time period. Simulation results show that the proposed scheme can effectively allocate and control the cleaning area to the robot vacuum cleaner without any direct interference from the consumer. The performance of the proposed scheme is then validated with a set of practical sequential data gathering tours in a typical office/home environment.