141 resultados para Elliptic equations
Resumo:
We consider boundary value problems for the elliptic sine-Gordon equation posed in the half plane y > 0. This problem was considered in Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) using the classical inverse scattering transform approach. Given the limitations of this approach, the results obtained rely on a nonlinear constraint on the spectral data derived heuristically by analogy with the linearized case. We revisit the analysis of such problems using a recent generalization of the inverse scattering transform known as the Fokas method, and show that the nonlinear constraint of Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) is a consequence of the so-called global relation. We also show that this relation implies a stronger constraint on the spectral data, and in particular that no choice of boundary conditions can be associated with a decaying (possibly mod 2π) solution analogous to the pure soliton solutions of the usual, time-dependent sine-Gordon equation. We also briefly indicate how, in contrast to the evolutionary case, the elliptic sine-Gordon equation posed in the half plane does not admit linearisable boundary conditions.
Resumo:
We consider boundary value problems for the N-wave interaction equations in one and two space dimensions, posed for x [greater-or-equal, slanted] 0 and x,y [greater-or-equal, slanted] 0, respectively. Following the recent work of Fokas, we develop an inverse scattering formalism to solve these problems by considering the simultaneous spectral analysis of the two ordinary differential equations in the associated Lax pair. The solution of the boundary value problems is obtained through the solution of a local Riemann–Hilbert problem in the one-dimensional case, and a nonlocal Riemann–Hilbert problem in the two-dimensional case.
Resumo:
In a recent paper [P. Glaister, Conservative upwind difference schemes for compressible flows in a Duct, Comput. Math. Appl. 56 (2008) 1787–1796] numerical schemes based on a conservative linearisation are presented for the Euler equations governing compressible flows of an ideal gas in a duct of variable cross-section, and in [P. Glaister, Conservative upwind difference schemes for compressible flows of a real gas, Comput. Math. Appl. 48 (2004) 469–480] schemes based on this philosophy are presented for real gas flows with slab symmetry. In this paper we seek to extend these ideas to encompass compressible flows of real gases in a duct. This will incorporate the handling of additional terms arising out of the variable geometry and the non-ideal nature of the gas.
Resumo:
We consider boundary value problems posed on an interval [0,L] for an arbitrary linear evolution equation in one space dimension with spatial derivatives of order n. We characterize a class of such problems that admit a unique solution and are well posed in this sense. Such well-posed boundary value problems are obtained by prescribing N conditions at x=0 and n–N conditions at x=L, where N depends on n and on the sign of the highest-degree coefficient n in the dispersion relation of the equation. For the problems in this class, we give a spectrally decomposed integral representation of the solution; moreover, we show that these are the only problems that admit such a representation. These results can be used to establish the well-posedness, at least locally in time, of some physically relevant nonlinear evolution equations in one space dimension.