65 resultados para Electromagnetism in medicine.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, Bayesian decision procedures are developed for dose-escalation studies based on bivariate observations of undesirable events and signs of therapeutic benefit. The methods generalize earlier approaches taking into account only the undesirable outcomes. Logistic regression models are used to model the two responses, which are both assumed to take a binary form. A prior distribution for the unknown model parameters is suggested and an optional safety constraint can be included. Gain functions to be maximized are formulated in terms of accurate estimation of the limits of a therapeutic window or optimal treatment of the next cohort of subjects, although the approach could be applied to achieve any of a wide variety of objectives. The designs introduced are illustrated through simulation and retrospective implementation to a completed dose-escalation study. Copyright © 2006 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces a simple futility design that allows a comparative clinical trial to be stopped due to lack of effect at any of a series of planned interim analyses. Stopping due to apparent benefit is not permitted. The design is for use when any positive claim should be based on the maximum sample size, for example to allow subgroup analyses or the evaluation of safety or secondary efficacy responses. A final frequentist analysis can be performed that is valid for the type of design employed. Here the design is described and its properties are presented. Its advantages and disadvantages relative to the use of stochastic curtailment are discussed. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most statistical methodology for phase III clinical trials focuses on the comparison of a single experimental treatment with a control. An increasing desire to reduce the time before regulatory approval of a new drug is sought has led to development of two-stage or sequential designs for trials that combine the definitive analysis associated with phase III with the treatment selection element of a phase II study. In this paper we consider a trial in which the most promising of a number of experimental treatments is selected at the first interim analysis. This considerably reduces the computational load associated with the construction of stopping boundaries compared to the approach proposed by Follman, Proschan and Geller (Biometrics 1994; 50: 325-336). The computational requirement does not exceed that for the sequential comparison of a single experimental treatment with a control. Existing methods are extended in two ways. First, the use of the efficient score as a test statistic makes the analysis of binary, normal or failure-time data, as well as adjustment for covariates or stratification straightforward. Second, the question of trial power is also considered, enabling the determination of sample size required to give specified power. Copyright © 2003 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper a robust method is developed for the analysis of data consisting of repeated binary observations taken at up to three fixed time points on each subject. The primary objective is to compare outcomes at the last time point, using earlier observations to predict this for subjects with incomplete records. A score test is derived. The method is developed for application to sequential clinical trials, as at interim analyses there will be many incomplete records occurring in non-informative patterns. Motivation for the methodology comes from experience with clinical trials in stroke and head injury, and data from one such trial is used to illustrate the approach. Extensions to more than three time points and to allow for stratification are discussed. Copyright © 2005 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pharmacogenetic trials investigate the effect of genotype on treatment response. When there are two or more treatment groups and two or more genetic groups, investigation of gene-treatment interactions is of key interest. However, calculation of the power to detect such interactions is complicated because this depends not only on the treatment effect size within each genetic group, but also on the number of genetic groups, the size of each genetic group, and the type of genetic effect that is both present and tested for. The scale chosen to measure the magnitude of an interaction can also be problematic, especially for the binary case. Elston et al. proposed a test for detecting the presence of gene-treatment interactions for binary responses, and gave appropriate power calculations. This paper shows how the same approach can also be used for normally distributed responses. We also propose a method for analysing and performing sample size calculations based on a generalized linear model (GLM) approach. The power of the Elston et al. and GLM approaches are compared for the binary and normal case using several illustrative examples. While more sensitive to errors in model specification than the Elston et al. approach, the GLM approach is much more flexible and in many cases more powerful. Copyright © 2005 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Health care providers, purchasers and policy makers need to make informed decisions regarding the provision of cost-effective care. When a new health care intervention is to be compared with the current standard, an economic evaluation alongside an evaluation of health benefits provides useful information for the decision making process. We consider the information on cost-effectiveness which arises from an individual clinical trial comparing the two interventions. Recent methods for conducting a cost-effectiveness analysis for a clinical trial have focused on the net benefit parameter. The net benefit parameter, a function of costs and health benefits, is positive if the new intervention is cost-effective compared with the standard. In this paper we describe frequentist and Bayesian approaches to cost-effectiveness analysis which have been suggested in the literature and apply them to data from a clinical trial comparing laparoscopic surgery with open mesh surgery for the repair of inguinal hernias. We extend the Bayesian model to allow the total cost to be divided into a number of different components. The advantages and disadvantages of the different approaches are discussed. In January 2001, NICE issued guidance on the type of surgery to be used for inguinal hernia repair. We discuss our example in the light of this information. Copyright © 2003 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A score test is developed for binary clinical trial data, which incorporates patient non-compliance while respecting randomization. It is assumed in this paper that compliance is all-or-nothing, in the sense that a patient either accepts all of the treatment assigned as specified in the protocol, or none of it. Direct analytic comparisons of the adjusted test statistic for both the score test and the likelihood ratio test are made with the corresponding test statistics that adhere to the intention-to-treat principle. It is shown that no gain in power is possible over the intention-to-treat analysis, by adjusting for patient non-compliance. Sample size formulae are derived and simulation studies are used to demonstrate that the sample size approximation holds. Copyright © 2003 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES: This contribution provides a unifying concept for meta-analysis integrating the handling of unobserved heterogeneity, study covariates, publication bias and study quality. It is important to consider these issues simultaneously to avoid the occurrence of artifacts, and a method for doing so is suggested here. METHODS: The approach is based upon the meta-likelihood in combination with a general linear nonparametric mixed model, which lays the ground for all inferential conclusions suggested here. RESULTS: The concept is illustrated at hand of a meta-analysis investigating the relationship of hormone replacement therapy and breast cancer. The phenomenon of interest has been investigated in many studies for a considerable time and different results were reported. In 1992 a meta-analysis by Sillero-Arenas et al. concluded a small, but significant overall effect of 1.06 on the relative risk scale. Using the meta-likelihood approach it is demonstrated here that this meta-analysis is due to considerable unobserved heterogeneity. Furthermore, it is shown that new methods are available to model this heterogeneity successfully. It is argued further to include available study covariates to explain this heterogeneity in the meta-analysis at hand. CONCLUSIONS: The topic of HRT and breast cancer has again very recently become an issue of public debate, when results of a large trial investigating the health effects of hormone replacement therapy were published indicating an increased risk for breast cancer (risk ratio of 1.26). Using an adequate regression model in the previously published meta-analysis an adjusted estimate of effect of 1.14 can be given which is considerably higher than the one published in the meta-analysis of Sillero-Arenas et al. In summary, it is hoped that the method suggested here contributes further to a good meta-analytic practice in public health and clinical disciplines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A sequential study design generally makes more efficient use of available information than a fixed sample counterpart of equal power. This feature is gradually being exploited by researchers in genetic and epidemiological investigations that utilize banked biological resources and in studies where time, cost and ethics are prominent considerations. Recent work in this area has focussed on the sequential analysis of matched case-control studies with a dichotomous trait. In this paper, we extend the sequential approach to a comparison of the associations within two independent groups of paired continuous observations. Such a comparison is particularly relevant in familial studies of phenotypic correlation using twins. We develop a sequential twin method based on the intraclass correlation and show that use of sequential methodology can lead to a substantial reduction in the number of observations without compromising the study error rates. Additionally, our approach permits straightforward allowance for other explanatory factors in the analysis. We illustrate our method in a sequential heritability study of dysplasia that allows for the effect of body mass index and compares monozygotes with pairs of singleton sisters. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers methods for testing for superiority or non-inferiority in active-control trials with binary data, when the relative treatment effect is expressed as an odds ratio. Three asymptotic tests for the log-odds ratio based on the unconditional binary likelihood are presented, namely the likelihood ratio, Wald and score tests. All three tests can be implemented straightforwardly in standard statistical software packages, as can the corresponding confidence intervals. Simulations indicate that the three alternatives are similar in terms of the Type I error, with values close to the nominal level. However, when the non-inferiority margin becomes large, the score test slightly exceeds the nominal level. In general, the highest power is obtained from the score test, although all three tests are similar and the observed differences in power are not of practical importance. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a simple Bayesian approach to sample size determination in clinical trials. It is required that the trial should be large enough to ensure that the data collected will provide convincing evidence either that an experimental treatment is better than a control or that it fails to improve upon control by some clinically relevant difference. The method resembles standard frequentist formulations of the problem, and indeed in certain circumstances involving 'non-informative' prior information it leads to identical answers. In particular, unlike many Bayesian approaches to sample size determination, use is made of an alternative hypothesis that an experimental treatment is better than a control treatment by some specified magnitude. The approach is introduced in the context of testing whether a single stream of binary observations are consistent with a given success rate p(0). Next the case of comparing two independent streams of normally distributed responses is considered, first under the assumption that their common variance is known and then for unknown variance. Finally, the more general situation in which a large sample is to be collected and analysed according to the asymptotic properties of the score statistic is explored. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accelerated failure time models with a shared random component are described, and are used to evaluate the effect of explanatory factors and different transplant centres on survival times following kidney transplantation. Different combinations of the distribution of the random effects and baseline hazard function are considered and the fit of such models to the transplant data is critically assessed. A mixture model that combines short- and long-term components of a hazard function is then developed, which provides a more flexible model for the hazard function. The model can incorporate different explanatory variables and random effects in each component. The model is straightforward to fit using standard statistical software, and is shown to be a good fit to the transplant data. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To determine whether the use of verbal descriptors suggested by the European Union (EU) such as "common" (1-10% frequency) and "rare" (0.01-0.1%) effectively conveys the level of risk of side effects to people taking a medicine. Design: Randomised controlled study with unconcealed allocation. Participants: 120 adults taking simvastatin or atorvastatin after cardiac surgery or myocardial infarction. Setting: Cardiac rehabilitation clinics at two hospitals in Leeds, UK. Intervention: A written statement about one of the side effects of the medicine (either constipation or pancreatitis). Within each side effect condition half the patients were given the information in verbal form and half in numerical form (for constipation, "common" or 2.5%; for pancreatitis, "rare" or 0.04%). Main outcome measure: The estimated likelihood of the side effect occurring. Other outcome measures related to the perceived severity of the side effect, its risk to health, and its effect on decisions about whether to take the medicine. Results: The mean likelihood estimate given for the constipation side effect was 34.2% in the verbal group and 8.1% in the numerical group; for pancreatitis it was 18% in the verbal group and 2.1% in the numerical group. The verbal descriptors were associated with more negative perceptions of the medicine than their equivalent numerical descriptors. Conclusions: Patients want and need understandable information about medicines and their risks and benefits. This is essential if they are to become partners in medicine taking. The use of verbal descriptors to improve the level of information about side effect risk leads to overestimation of the level of harm and may lead patients to make inappropriate decisions about whether or not they take the medicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time/frequency and temporal analyses have been widely used in biomedical signal processing. These methods represent important characteristics of a signal in both time and frequency domain. In this way, essential features of the signal can be viewed and analysed in order to understand or model the physiological system. Historically, Fourier spectral analyses have provided a general method for examining the global energy/frequency distributions. However, an assumption inherent to these methods is the stationarity of the signal. As a result, Fourier methods are not generally an appropriate approach in the investigation of signals with transient components. This work presents the application of a new signal processing technique, empirical mode decomposition and the Hilbert spectrum, in the analysis of electromyographic signals. The results show that this method may provide not only an increase in the spectral resolution but also an insight into the underlying process of the muscle contraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The externally recorded electroencephalogram (EEG) is contaminated with signals that do not originate from the brain, collectively known as artefacts. Thus, EEG signals must be cleaned prior to any further analysis. In particular, if the EEG is to be used in online applications such as Brain-Computer Interfaces (BCIs) the removal of artefacts must be performed in an automatic manner. This paper investigates the robustness of Mutual Information based features to inter-subject variability for use in an automatic artefact removal system. The system is based on the separation of EEG recordings into independent components using a temporal ICA method, RADICAL, and the utilisation of a Support Vector Machine for classification of the components into EEG and artefact signals. High accuracy and robustness to inter-subject variability is achieved.