81 resultados para Electrical impedance tomography, Calderon problem, factorization method
Resumo:
The Prony fitting theory is applied in this paper to solve the deconvolution problem. There are two cases in deconvolution in which unstable solution is easy to appear. They are: (1)the frequency band of known kernel is more narraw than that of the unknown kernel; (2) there exists noise. These two cases are studied thoroughly and the effectiveness of Prony fitting method is showed. Finally, this method is simulated in computer. The simulation results are compared with those obtained by using FFT method directly.
Resumo:
In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.
Resumo:
We discuss the modeling of dielectric responses of electromagnetically excited networks which are composed of a mixture of capacitors and resistors. Such networks can be employed as lumped-parameter circuits to model the response of composite materials containing conductive and insulating grains. The dynamics of the excited network systems are studied using a state space model derived from a randomized incidence matrix. Time and frequency domain responses from synthetic data sets generated from state space models are analyzed for the purpose of estimating the fraction of capacitors in the network. Good results were obtained by using either the time-domain response to a pulse excitation or impedance data at selected frequencies. A chemometric framework based on a Successive Projections Algorithm (SPA) enables the construction of multiple linear regression (MLR) models which can efficiently determine the ratio of conductive to insulating components in composite material samples. The proposed method avoids restrictions commonly associated with Archie’s law, the application of percolation theory or Kohlrausch-Williams-Watts models and is applicable to experimental results generated by either time domain transient spectrometers or continuous-wave instruments. Furthermore, it is quite generic and applicable to tomography, acoustics as well as other spectroscopies such as nuclear magnetic resonance, electron paramagnetic resonance and, therefore, should be of general interest across the dielectrics community.
Resumo:
A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot
Resumo:
The problem of symmetric stability is examined within the context of the direct Liapunov method. The sufficient conditions for stability derived by Fjørtoft are shown to imply finite-amplitude, normed stability. This finite-amplitude stability theorem is then used to obtain rigorous upper bounds on the saturation amplitude of disturbances to symmetrically unstable flows.By employing a virial functional, the necessary conditions for instability implied by the stability theorem are shown to be in fact sufficient for instability. The results of Ooyama are improved upon insofar as a tight two-sided (upper and lower) estimate is obtained of the growth rate of (modal or nonmodal) symmetric instabilities.The case of moist adiabatic systems is also considered.
Resumo:
Electrical methods of geophysical survey are known to produce results that are hard to predict at different times of the year, and under differing weather conditions. This is a problem which can lead to misinterpretation of archaeological features under investigation. The dynamic relationship between a ‘natural’ soil matrix and an archaeological feature is a complex one, which greatly affects the success of the feature’s detection when using active electrical methods of geophysical survey. This study has monitored the gradual variation of measured resistivity over a selection of study areas. By targeting difficult to find, and often ‘missing’ electrical anomalies of known archaeological features, this study has increased the understanding of both the detection and interpretation capabilities of such geophysical surveys. A 16 month time-lapse study over 4 archaeological features has taken place to investigate the aforementioned detection problem across different soils and environments. In addition to the commonly used Twin-Probe earth resistance survey, electrical resistivity imaging (ERI) and quadrature electro-magnetic induction (EMI) were also utilised to explore the problem. Statistical analyses have provided a novel interpretation, which has yielded new insights into how the detection of archaeological features is influenced by the relationship between the target feature and the surrounding ‘natural’ soils. The study has highlighted both the complexity and previous misconceptions around the predictability of the electrical methods. The analysis has confirmed that each site provides an individual and nuanced situation, the variation clearly relating to the composition of the soils (particularly pore size) and the local weather history. The wide range of reasons behind survey success at each specific study site has been revealed. The outcomes have shown that a simplistic model of seasonality is not universally applicable to the electrical detection of archaeological features. This has led to the development of a method for quantifying survey success, enabling a deeper understanding of the unique way in which each site is affected by the interaction of local environmental and geological conditions.
Resumo:
We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.
Resumo:
In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.
Resumo:
A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.
Resumo:
Cross-hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional-wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale-rich rocks have fabric-related average velocity anisotropy of between 10% and 30%. The cross-hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross-hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid-filled fractures, when using geophysical techniques for hydrological investigations.
Resumo:
In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids.
Resumo:
We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerical experiments validate these conclusions.
Resumo:
In this article, we use the no-response test idea, introduced in Luke and Potthast (2003) and Potthast (Preprint) and the inverse obstacle problem, to identify the interface of the discontinuity of the coefficient gamma of the equation del (.) gamma(x)del + c(x) with piecewise regular gamma and bounded function c(x). We use infinitely many Cauchy data as measurement and give a reconstructive method to localize the interface. We will base this multiwave version of the no-response test on two different proofs. The first one contains a pointwise estimate as used by the singular sources method. The second one is built on an energy (or an integral) estimate which is the basis of the probe method. As a conclusion of this, the probe and the singular sources methods are equivalent regarding their convergence and the no-response test can be seen as a unified framework for these methods. As a further contribution, we provide a formula to reconstruct the values of the jump of gamma(x), x is an element of partial derivative D at the boundary. A second consequence of this formula is that the blow-up rate of the indicator functions of the probe and singular sources methods at the interface is given by the order of the singularity of the fundamental solution.
Resumo:
A vertical conduction current flows in the atmosphere as a result of the global atmospheric electric circuit. The current at the surface consists of the conduction current and a locally generated displacement current, which are often approximately equal in magnitude. A method of separating the two currents using two collectors of different geometry is investigated. The picoammeters connected to the collectors have a RC time constant of approximately 3 s, permitting the investigation of higher frequency air-earth current changes than previously achieved. The displacement current component of the air-earth current derived from the instrument agrees with calculations using simultaneous data from a co-located fast response electric field mill. The mean value of the nondisplacement current measured over 9 h was 1.76 +/- 0.002 pA m(-2). (c) 2006 American Institute of Physics.