46 resultados para Electric currents, Alternating
Resumo:
We investigate electron acceleration due to shear Alfven waves in a collissionless plasma for plasma parameters typical of 4–5RE radial distance from the Earth along auroral field lines. Recent observational work has motivated this study, which explores the plasma regime where the thermal velocity of the electrons is similar to the Alfven speed of the plasma, encouraging Landau resonance for electrons in the wave fields. We use a self-consistent kinetic simulation model to follow the evolution of the electrons as they interact with a short-duration wave pulse, which allows us to determine the parallel electric field of the shear Alfven wave due to both electron inertia and electron pressure effects. The simulation demonstrates that electrons can be accelerated to keV energies in a modest amplitude sub-second period wave. We compare the parallel electric field obtained from the simulation with those provided by fluid approximations.
Resumo:
We illustrate how coupling could occur between surface air and clouds via the global electric circuit – through Atmospheric Lithosphere–Ionosphere Charge Exchange (ALICE) processes – in an attempt to develop a physical understanding of the possible relationships between earthquakes and clouds
Resumo:
Karen Aplin and Giles Harrison examine international records of the 1859 Carrington flare and consider what they mean for our understanding of space weather today. Space weather is increasingly recognized as a hazard to modern societies, and one way to assess the extent of its possible impact is through analysis of historic space weather events. One such event was the massive solar storm of late August and early September 1859. This is now widely known as the “Carrington flare” or “Carrington event” after the visual solar emissions on 1 September first reported by the Victorian astronomer Richard Carrington from his observatory in Redhill, Surrey (Carrington 1859). The related aurorae and subsequent effects on telegraph networks are well documented (e.g. Clark 2007, Boteler 2006), but use of modern techniques, such as analysis of nitrates produced by solar protons in ice cores to retrospectively assess the nature of the solar flare, has proved problematic (Wolff et al. 2012). This means that there is still very little quantitative information about the flare beyond magnetic observations (e.g. Viljanen et al. 2014).
Resumo:
In this paper we present the capability of a new network of field mill sensors to monitor the atmospheric electric field at various locations in South America; we also show some early results. The main objective of the new network is to obtain the characteristic Universal Time diurnal curve of the atmospheric electric field in fair weather, known as the Carnegie curve. The Carnegie curve is closely related to the current sources flowing in the Global Atmospheric Electric Circuit so that another goal is the study of this relationship on various time scales (transient/monthly/seasonal/annual). Also, by operating this new network, we may also study departures of the Carnegie curve from its long term average value related to various solar, geophysical and atmospheric phenomena such as the solar cycle, solar flares and energetic charged particles, galactic cosmic rays, seismic activity and specific meteorological events. We then expect to have a better understanding of the influence of these phenomena on the Global Atmospheric Electric Circuit and its time-varying behavior.
Resumo:
The effect of the direction of external electric field on the shear stress of an ER fluid has been studied by molecular-dynamics simulation. Due to the formation of inclined chains, the shear stress strongly depends on the direction of the field, and it may be very large under some special field direction. And theoretical model of ideal microstructure of ER fluids has proved this result. Thus the ER effect may be greatly enhanced just by choosing an optimum direction for the field without any additional requirement, suggesting a promising way to the practical application of ER fluids.
Resumo:
The weekly dependence of pollutant aerosols in the urban environment of Lisbon (Portugal) is inferred from the records of atmospheric electric field at Portela meteorological station (38°47′N,9°08′W). Measurements were made with a Bendorf electrograph. The data set exists from 1955 to 1990, but due to the contaminating effect of the radioactive fallout during 1960 and 1970s, only the period between 1980 and 1990 is considered here. Using a relative difference method a weekly dependence of the atmospheric electric field is found in these records, which shows an increasing trend between 1980 and 1990. This is consistent with a growth of population in the Lisbon metropolitan area and consequently urban activity, mainly traffic. Complementarily, using a Lomb–Scargle periodogram technique the presence of a daily and weekly cycle is also found. Moreover, to follow the evolution of theses cycles, in the period considered, a simple representation in a colour surface plot representation of the annual periodograms is presented. Further, a noise analysis of the periodograms is made, which validates the results found. Two datasets were considered: all days in the period, and fair-weather days only.
Resumo:
We predict the field-aligned currents around cusp ion steps produced by pulsed reconnection between the geomagnetic field and an interplanetary magnetic field (IMF) with a B-Y component that is large in magnitude. For B-Y > 0, patches of newly opened flux move westward and eastward in the Northern and Southern Hemispheres, respectively, under the influence of the magnetic curvature force. These flow directions are reversed for B-Y < 0. The speed of this longitudinal motion initially grows with elapsed time since reconnection, but then decays as the newly opened field lines straighten. We predict sheets of field-aligned current on the boundaries between the patches produced by successive reconnection pulses, associated with the difference in the speeds of their longitudinal motion. For low elapsed times since reconnection, near the equatorward edge of the cusp region where the field lines are accelerating, the field-aligned current sheets will be downward or upward in both hemispheres for positive or negative IMF B-Y, respectively. At larger elapsed times since reconnection, as events slow and evolve from the cusp into the mantle region, these field-aligned current directions will be reversed. Observations by the Polar spacecraft on August 26,1998, show the predicted upward current sheets at steps seen in the mantle region for IMF B-Y > 0. Mapped into the ionosphere, the steps coincide with poleward moving events seen by the CUTLASS HF radar. The mapped location of the largest step also coincides with a poleward moving arc seen by the UVI imager on Polar. We show that the arc is consistent with a region of upward field-aligned current that has become unstable, such that a potential drop of about 1 kV formed below the spacecraft. The importance of these observations is that they confirm that the poleward moving events, as seen by the HF radar and the UV imager, are due to pulsed magnetopause reconnection. Milan et al. [2000] noted that the great longitudinal extent of these events means that the required reconnection pulses would have contributed almost all the voltage placed across the magnetosphere at this time. The observations also show that auroral arcs can form on open field lines in response to the pulsed application of voltage at the magnetopause.
Resumo:
Naturally enhanced incoherent scatter spectra from the vicinity of the dayside cusp/cleft, interpreted as being due to plasma turbulence driven by short bursts of intense field-aligned current, are compared with high-resolution narrow-angle auroral images and meridian scanning photometer data. Enhanced spectra have been observed on many occasions in association with nightside aurora, but there has been only one report of such spectra seen in the cusp/cleft region. Narrow-angle images show considerable change in the aurora on timescales shorter than the 10-s radar integration period, which could explain spectra observed with both ion lines simultaneously enhanced. Enhanced radar spectra are generally seen inside or beside regions of 630-nm auroral emission, indicative of sharp F region conductivity gradients, but there appears also to be a correlation with dynamic, small-scale auroral forms of order 100 m and less in width.
Resumo:
A coordinated ground-based observational campaign using the IMAGE magnetometer network, EISCAT radars and optical instruments on Svalbard has made possible detailed studies of a travelling convection vortices (TCV) event on 6 January 1992. Combining the data from these facilities allows us to draw a very detailed picture of the features and dynamics of this TCV event. On the way from the noon to the drawn meridian, the vortices went through a remarkable development. The propagation velocity in the ionosphere increased from 2.5 to 7.4 km s−1, and the orientation of the major axes of the vortices rotated from being almost parallel to the magnetic meridian near noon to essentially perpendicular at dawn. By combining electric fields obtained by EISCAT and ionospheric currents deduced from magnetic field recordings, conductivities associated with the vortices could be estimated. Contrary to expectations we found higher conductivities below the downward field aligned current (FAC) filament than below the upward directed. Unexpected results also emerged from the optical observations. For most of the time there were no discrete aurora at 557.7 nm associated with the TCVs. Only once did a discrete form appear at the foot of the upward FAC. This aurora subsequently expanded eastward and westward leaving its centre at the same longitude while the TCV continued to travel westward. Also we try to identify the source regions of TCVs in the magnetosphere and discuss possible generation mechanisms.
Resumo:
Conjunctive measurements made by the Dynamics Explorer 1 and 2 spacecraft on October 22, 1981, under conditions of southward IMF, suggest the existence of a cusp ion injection from a region at the magnetopause with a scale size of ∼ 1/2 to 1 R E . Current signatures observed by the LAPI and MAGB instruments on board DE-2 indicate the existence of a rotation in the magnetic field that is consistent with a filamentary current system. The observed current structure can be interpreted as the ionospheric signature of a flux transfer event (FTE). In addition to this large-scale current structure there exist three small-scale filamentary current pairs. These current pairs close locally and thus, if our interpretation of this event as an FTE is correct, represent the first reported observations of FTE interior structure at low-altitudes.
Resumo:
Recent observations from the Dynamics Explorer 1 (DE-1) spacecraft have shown that the dayside auroral zone is an important source of very low-energy superthermal O^+ ions for the polar magnetosphere. When observed at 2000- to 5000-km altitude, the core of the O^+ distribution exhibits transverse heating to energies on the order of 10 eV, significant upward heat flux, and subsonic upward flow at significant flux levels exceeding 10^8 cm^{-2}s^{-1}. The term "upwelling ions" has been adopted to label these flows, which stand out in sharp contrast to the light ion polar wind flows observed in the same altitude range in the polar cap and subauroral magnetosphere. We have chosen a typical upwelling ion event for detailed study, correlating retarding ion mass spectrometer observations of the low-energy plasma with energetic ion observations and local electromagnetic field observations. The upwelling ion signature is colocated with the magnetospheric cleft as marked by precipitating energetic magnetosheath ions. The apparent ionospheric heating is clearly linked with the magnetic field signatures of strong field-aligned currents in the vicinity of the dayside polar cap boundary. Electric field and ion plasma measurements indicate that a very strong and localized convection channel or jet exists coincident with the other signatures of this event. These observations indicate that transverse ion heating to temperatures on the order of 10^5 K in the 2000- to 5000-km ionosphere is an important factor in producing heavy ion outflows into the polar magnetosphere. This result contrasts with recent suggestions that electron heating to temperatures of order 10^4 K is the most important parameter with regard to O^+ outflow.
Resumo:
A new dayside source of O+ ions for the polar magnetosphere is described, and a statistical survey presented of upward flows of O+ ions using 2 years of data from the retarding ion mass spectrometer (RIMS) experiment on board DE 1, at geocentric distances below 3 RE and invariant latitudes above 40°. The flows are classified according to their spin angle distributions. It is believed that the spacecraft potential near perigee is generally less than +2 V, in which case the entire O+ population at energies below about 60 eV is sampled. Examples are given of field-aligned flow and of transversely accelerated “core” O+ ions; in the latter events a large fraction of the total O+ ion population has been transversely accelerated, and in some extreme cases all the observed ions (of all ion species) have been accelerated, and no residual cold population is observed (“toroidal” distributions). However, by far the most common type of O+ upflow seen by DE RIMS lies near the dayside polar cap boundary (particularly in the prenoon sector) and displays an asymmetric spin angle distribution. In such events the ions carry an upward heat flux, and strong upflow of all species is present (H+, He+, O+, O++, and N+ have all been observed with energies up to about 30 eV, but with the majority of ions below about 2 eV); hence, these have been termed upwelling ion events. The upwelling ions are embedded in larger regions of classical light ion polar wind and are persistently found under the following conditions: at geocentric distances greater than 1.4 RE; at all Kp in summer, but only at high Kp in winter. Low-energy conical ions (<30 eV) are only found near the equatorial edge of the events, the latitude of which moves equatorward with increasing Kp and is highly correlated with the location of field-aligned currents. The RIMS data are fully consistent with a “mass spectrometer effect,” whereby light ions and the more energetic O+ ions flow into the lobes and mantle and hence the far-tail plasma sheet, but lower-energy O+ is swept across the polar cap by the convection electric field, potentially acting as a source for the nightside auroral acceleration regions. The occurrence probability of upwelling ion events, as compared to those of low-altitude transversely accelerated core ions and of field-aligned flow, suggests this could be the dominant mechanism for supplying the nightside auroral acceleration region, and subsequently the ring current and near-earth plasma sheet, with ionospheric O+ ions. It is shown that the total rate of O+ outflow in upwelling ion events (greater than 10^25 s^{−1}) is sufficient for the region near the dayside polar cap boundary to be an important ionospheric heavy ion source.
Resumo:
We investigated the plume structure of a piezo-electric sprayer system, set up to release ethanol in a wind tunnel, using a fast response mini-photoionizaton detector. We recorded the plume structure of four different piezo-sprayer configurations: the sprayer alone; with a 1.6-mm steel mesh shield; with a 3.2-mm steel mesh shield; and with a 5 cm circular upwind baffle. We measured a 12 × 12-mm core at the center of the plume, and both a horizontal and vertical cross-section of the plume, all at 100-, 200-, and 400-mm downwind of the odor source. Significant differences in plume structure were found among all configurations in terms of conditional relative mean concentration, intermittency, ratio of peak concentration to conditional mean concentration, and cross-sectional area of the plume. We then measured the flight responses of the almond moth, Cadra cautella, to odor plumes generated with the sprayer alone, and with the upwind baffle piezo-sprayer configuration, releasing a 13:1 ratio of (9Z,12E)-tetradecadienyl acetate and (Z)-9-tetradecenyl acetate diluted in ethanol at release rates of 1, 10, 100, and 1,000 pg/min. For each configuration, differences in pheromone release rate resulted in significant differences in the proportions of moths performing oriented flight and landing behaviors. Additionally, there were apparent differences in the moths’ behaviors between the two sprayer configurations, although this requires confirmation with further experiments. This study provides evidence that both pheromone concentration and plume structure affect moth orientation behavior and demonstrates that care is needed when setting up experiments that use a piezo-electric release system to ensure the optimal conditions for behavioral observations.
Resumo:
The Chiado’s fire that affected the city centre of Lisbon (Portugal) occurred on 25th August 1988 and had a significant human and environmental impact. This fire was considered the most significant hazard to have occurred in Lisbon city centre after the major earthquake of 1755. A clear signature of this fire is found in the atmospheric electric field data recorded at Portela meteorological station about 8 km NE from the site where the fire started at Chiado. Measurements were made using a Benndorf electrograph with a probe at 1 m height. The atmospheric electric field reached 510 V/m when the wind direction was coming from SW to NE, favourable to the transport of the smoke plume from Chiado to Portela. Such observations agree with predictions using Hysplit air mass trajectory modelling and have been used to estimate the smoke concentration to be ~0.4 mg/m3. It is demonstrated that atmospheric electric field measurements were therefore extremely sensitive to Chiado’s fire. This result is of particular current interest in using networks of atmospheric electric field sensors to complement existing optical and meteorological observations for fire monitoring.