31 resultados para Effective notch stress method
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (1)
- Aston University Research Archive (28)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (58)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (35)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (31)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (9)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (16)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (8)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons - Montana Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (12)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (15)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (53)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (14)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (8)
- Publishing Network for Geoscientific & Environmental Data (45)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (162)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (39)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (34)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (7)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (50)
- Université de Montréal (2)
- Université de Montréal, Canada (14)
- University of Michigan (4)
- University of Queensland eSpace - Australia (53)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In numerical weather prediction, parameterisations are used to simulate missing physics in the model. These can be due to a lack of scientific understanding or a lack of computing power available to address all the known physical processes. Parameterisations are sources of large uncertainty in a model as parameter values used in these parameterisations cannot be measured directly and hence are often not well known; and the parameterisations themselves are also approximations of the processes present in the true atmosphere. Whilst there are many efficient and effective methods for combined state/parameter estimation in data assimilation (DA), such as state augmentation, these are not effective at estimating the structure of parameterisations. A new method of parameterisation estimation is proposed that uses sequential DA methods to estimate errors in the numerical models at each space-time point for each model equation. These errors are then fitted to pre-determined functional forms of missing physics or parameterisations that are based upon prior information. We applied the method to a one-dimensional advection model with additive model error, and it is shown that the method can accurately estimate parameterisations, with consistent error estimates. Furthermore, it is shown how the method depends on the quality of the DA results. The results indicate that this new method is a powerful tool in systematic model improvement.