48 resultados para Ecosystem-based management


Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the most common Demand Side Management programs consists of Time-of-Use (TOU) tariffs, where consumers are charged differently depending on the time of the day when they make use of energy services. This paper assesses the impacts of TOU tariffs on a dataset of residential users from the Province of Trento in Northern Italy in terms of changes in electricity demand, price savings, peak load shifting and peak electricity demand at substation level. Findings highlight that TOU tariffs bring about higher average electricity consumption and lower payments by consumers. A significant level of load shifting takes place for morning peaks. However, issues with evening peaks are not resolved. Finally, TOU tariffs lead to increases in electricity demand for substations at peak time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Requirements for research, practices and policies affecting soil management in relation to global food security are reviewed. Managing soil organic carbon (C) is central because soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop growth. Even small changes in total C content can have disproportionately large impacts on key soil physical properties. Practices to encourage maintenance of soil C are important for ensuring sustainability of all soil functions. Soil is a major store of C within the biosphere – increases or decreases in this large stock can either mitigate or worsen climate change. Deforestation, conversion of grasslands to arable cropping and drainage of wetlands all cause emission of C; policies and international action to minimise these changes are urgently required. Sequestration of C in soil can contribute to climate change mitigation but the real impact of different options is often misunderstood. Some changes in management that are beneficial for soil C, increase emissions of nitrous oxide (a powerful greenhouse gas) thus cancelling the benefit. Research on soil physical processes and their interactions with roots can lead to improved and novel practices to improve crop access to water and nutrients. Increased understanding of root function has implications for selection and breeding of crops to maximise capture of water and nutrients. Roots are also a means of delivering natural plant-produced chemicals into soil with potentially beneficial impacts. These include biocontrol of soil-borne pests and diseases and inhibition of the nitrification process in soil (conversion of ammonium to nitrate) with possible benefits for improved nitrogen use efficiency and decreased nitrous oxide emission. The application of molecular methods to studies of soil organisms, and their interactions with roots, is providing new understanding of soil ecology and the basis for novel practical applications. Policy makers and those concerned with development of management approaches need to keep a watching brief on emerging possibilities from this fast-moving area of science. Nutrient management is a key challenge for global food production: there is an urgent need to increase nutrient availability to crops grown by smallholder farmers in developing countries. Many changes in practices including inter-cropping, inclusion of nitrogen-fixing crops, agroforestry and improved recycling have been clearly demonstrated to be beneficial: facilitating policies and practical strategies are needed to make these widely available, taking account of local economic and social conditions. In the longer term fertilizers will be essential for food security: policies and actions are needed to make these available and affordable to small farmers. In developed regions, and those developing rapidly such as China, strategies and policies to manage more precisely the necessarily large flows of nutrients in ways that minimise environmental damage are essential. A specific issue is to minimise emissions of nitrous oxide whilst ensuring sufficient nitrogen is available for adequate food production. Application of known strategies (through either regulation or education), technological developments, and continued research to improve understanding of basic processes will all play a part. Decreasing soil erosion is essential, both to maintain the soil resource and to minimise downstream damage such as sedimentation of rivers with adverse impacts on fisheries. Practical strategies are well known but often have financial implications for farmers. Examples of systems for paying one group of land users for ecosystem services affecting others exist in several parts of the world and serve as a model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examines the relationship between community based organisations and marine and coastal resource management in the Western Indian Ocean Region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Clinical pathway is an approach to standardise care processes to support the implementations of clinical guidelines and protocols. It is designed to support the management of treatment processes including clinical and non-clinical activities, resources and also financial aspects. It provides detailed guidance for each stage in the management of a patient with the aim of improving the continuity and coordination of care across different disciplines and sectors. However, in the practical treatment process, the lack of knowledge sharing and information accuracy of paper-based clinical pathways burden health-care staff with a large amount of paper work. This will often result in medical errors, inefficient treatment process and thus poor quality medical services. This paper first presents a theoretical underpinning and a co-design research methodology for integrated pathway management by drawing input from organisational semiotics. An approach to integrated clinical pathway management is then proposed, which aims to embed pathway knowledge into treatment processes and existing hospital information systems. The capability of this approach has been demonstrated through the case study in one of the largest hospitals in China. The outcome reveals that medical quality can be improved significantly by the classified clinical pathway knowledge and seamless integration with hospital information systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

REDD (reduced emissions from deforestation and degradation) aims to slow carbon releases caused by forest disturbance by making payments conditional on forest quality over time. Like earlier policies to slow deforestation, REDD must change the behaviour of forest degrading actors. Broadly, it can be implemented with payments to forest users in exchange for improved forest management, thus creating incentives; through payments for enforcement, thus creating disincentives; or through addressing external drivers such as urban charcoal demand. In Tanzania, community-based forest management (CBFM), a form of participatory forest management, was chosen by the Tanzania Forest Conservation Group, a local NGO, as a model for implementing REDD pilot programmes. Payments are made to villages that have the rights to forest carbon. In exchange, the villages must demonstrably reduce deforestation at the village level. In this paper, using this pilot programme as a case study, combined with a review of the literature, we provide insights for REDD implementation in sub-Saharan Africa. We pay particular attention to leakage, monitoring and enforcement. We suggest that implementing REDD through CBFM-type structures can create appropriate incentives and behaviour change when the recipients of the REDD funds are also the key drivers of forest change. When external forces drive forest change, however, REDD through CBFM-type structures becomes an enforcement programme with local communities rather than government agencies being responsible for the enforcement. That structure imposes costs on local communities, whose local authority limits the ability to address leakage outside the particular REDD village.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Approaches to natural resource management emphasise the importance of involving local people and institutions in order to build capacity, limit costs, and achieve environmental sustainability. Governments worldwide, often encouraged by international donors, have formulated devolution policies and legal instruments that provide an enabling environment for devolved natural resource management. However, implementation of these policies reveals serious challenges. This article explores the effects of limited involvement of local people and institutions in policy development and implementation. An in-depth study of the Forest Policy of Malawi and Village Forest Areas in the Lilongwe district provides an example of externally driven policy development which seeks to promote local management of natural resources. The article argues that policy which has weak ownership by national government and does not adequately consider the complexity of local institutions, together with the effects of previous initiatives on them, can create a cumulative legacy through which destructive resource use practices and social conflict may be reinforced. In short, poorly developed and implemented community based natural resource management policies can do considerably more harm than good. Approaches are needed that enable the policy development process to embed an in-depth understanding of local institutions whilst incorporating flexibility to account for their location-specific nature. This demands further research on policy design to enable rigorous identification of positive and negative institutions and ex-ante exploration of the likely effects of different policy interventions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Earthworms are significant ecosystem engineers and are an important component of the diet of many vertebrates and invertebrates, so the ability to predict their distribution and abundance would have wide application in ecology, conservation and land management. Earthworm viability is known to be affected by the availability and quality of food resources, soil water conditions and temperature, but has not yet been modelled mechanistically to link effects on individuals to field population responses. Here we present a novel model capable of predicting the effects of land management and environmental conditions on the distribution and abundance of Aporrectodea caliginosa, the dominant earthworm species in agroecosystems. Our process-based approach uses individual based modelling (IBM), in which each individual has its own energy budget. Individual earthworm energy budgets follow established principles of physiological ecology and are parameterised for A. caliginosa from experimental measurements under optimal conditions. Under suboptimal conditions (e.g. food limitation, low soil temperatures and water contents) reproduction is prioritised over growth. Good model agreement to independent laboratory data on individual cocoon production and growth of body mass, under variable feeding and temperature conditions support our representation of A. caliginosa physiology through energy budgets. Our mechanistic model is able to accurately predict A. caliginosa distribution and abundance in spatially heterogeneous soil profiles representative of field study conditions. Essential here is the explicit modelling of earthworm behaviour in the soil profile. Local earthworm movement responds to a trade-off between food availability and soil water conditions, and this determines the spatiotemporal distribution of the population in the soil profile. Importantly, multiple environmental variables can be manipulated simultaneously in the model to explore earthworm population exposure and effects to combinations of stressors. Potential applications include prediction of the population-level effects of pesticides and changes in soil management e.g. conservation tillage and climate change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to develop a comprehensive taxonomy of green supply chain management (GSCM) practices and develop a structural equation modelling-driven decision support system following GSCM taxonomy for managers to provide better understanding of the complex relationship between the external and internal factors and GSCM operational practices. Typology and/or taxonomy play a key role in the development of social science theories. The current taxonomies focus on a single or limited component of the supply chain. Furthermore, they have not been tested using different sample compositions and contexts, yet replication is a prerequisite for developing robust concepts and theories. In this paper, we empirically replicate one such taxonomy extending the original study by (a) developing broad (containing the key components of supply chain) taxonomy; (b) broadening the sample by including a wider range of sectors and organisational size; and (c) broadening the geographic scope of the previous studies. Moreover, we include both objective measures and subjective attitudinal measurements. We use a robust two-stage cluster analysis to develop our GSCM taxonomy. The main finding validates the taxonomy previously proposed and identifies size, attitude and level of environmental risk and impact as key mediators between internal drivers, external drivers and GSCM operational practices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper addresses the perception of different wetlands in and around the Humber estuary in the Bronze Age. Combining past and current research, it will be argued that the perception of intertidal wetlands was nearly diametrically opposed to the perception of riverine floodplains. This contrasting perception is reflected in the material culture of the Bronze Age, and may be explained through the particular manner in which landscapes changed following marine transgressions. This work was largely undertaken within the framework of the Humber Wetlands Survey, an integrated archaeological and palaeoenvironmental research programme funded by English Heritage since 1992

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food production in the context of the sustainable management of natural resources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Mediterranean areas, conventional tillage increases soil organic matter losses, reduces soil quality, and contributes to climate change due to increased CO2 emissions. CO2 sequestration rates in soil may be enhanced by appropriate agricultural soil management and increasing soil organic matter content. This study analyzes the stratification ratio (SR) index of soil organic carbon (SOC), nitrogen (N) and C:N ratio under different management practices in an olive grove (OG) in Mediterranean areas (Andalusia, southern Spain). Management practices considered in this study are conventional tillage (CT) and no tillage (NT). In the first case, CT treatments included addition of alperujo (A) and olive leaves (L). A control plot with no addition of olive mill waste was considered (CP). In the second case, NT treatments included addition of chipped pruned branches (NT1) and chipped pruned branches and weeds (NT2). The SRs of SOC increased with depth for all treatments. The SR of SOC was always higher in NT compared to CT treatments, with the highest SR of SOC observed under NT2. The SR of N increased with depth in all cases, ranging between 0.89 (L-SR1) and 39.11 (L-SR3 and L-SR4).The SR of C:N ratio was characterized by low values, ranging from 0.08 (L-SR3) to 1.58 (NT1-SR2) and generally showing higher values in SR1 and SR2 compared to those obtained in SR3 and SR4. This study has evaluated several limitations to the SR index such as the fact that it is descriptive but does not analyze the behavior of the variable over time. In addition, basing the assessment of soil quality on a single variable could lead to an oversimplification of the assessment. Some of these limitations were experienced in the assessment of L, where SR1 of SOC was the lowest of the studied soils. In this case, the higher content in the second depth interval compared to the first was caused by the intrinsic characteristics of this soil's formation process rather than by degradation. Despite the limitations obtained SRs demonstrate that NT with the addition of organic material improves soil quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within-field variation in sugar beet yield and quality was investigated in three commercial sugar beet fields in the east of England to identify the main associated variables and to examine the possibility of predicting yield early in the season with a view to spatially variable management of sugar beet crops. Irregular grid sampling with some purposively-located nested samples was applied. It revealed the spatial variability in each sugar beet field efficiently. In geostatistical analyses, most variograms were isotropic with moderate to strong spatial dependency indicating a significant spatial variation in sugar beet yield and associated growth and environmental variables in all directions within each field. The Kriged maps showed spatial patterns of yield variability within each field and visual association with the maps of other variables. This was confirmed by redundancy analyses and Pearson correlation coefficients. The main variables associated with yield variability were soil type, organic matter, soil moisture, weed density and canopy temperature. Kriged maps of final yield variability were strongly related to that in crop canopy cover, LAI and intercepted solar radiation early in the growing season, and the yield maps of previous crops. Therefore, yield maps of previous crops together with early assessment of sugar beet growth may make an early prediction of within-field variability in sugar beet yield possible. The Broom’s Barn sugar beet model failed to account for the spatial variability in sugar yield, but the simulation was greatly improved when corrected for early canopy development cover and when the simulated yield was adjusted for weeds and plant population. Further research to optimize inputs to maximise sugar yield should target the irrigation and fertilizing of areas within fields with low canopy cover early in the season.