61 resultados para East Asia -- Economic conditions
Resumo:
Value chain studies, including production system and market chain studies, are essential to value chain analysis, which when coupled with disease risk analysis is a powerful tool to identify key constraints and opportunities for disease control based on risk management in a livestock production and marketing system. Several production system and market chain studies have been conducted to support disease control interventions in South East Asia. This practical aid summarizes experiences and lessons learned from the implementation of such value chain studies in South East Asia. Based on these experiences it prioritizes the required data for the respective purpose of a value chain study and recommends data collection as well as data analysis tools. This practical aid is intended as an adjunct to the FAO value chain approach and animal diseases risk management guidelines document. Further practical advice is provided for more effective use of value chain studies in South and South East Asia as part of animal health decision support.
Resumo:
In this paper, we propose a scenario framework that could provide a scenario “thread” through the different climate research communities (climate change – vulnerability, impact, and adaptation (VIA) and mitigation) in order to provide assessment of mitigation and adaptation strategies and other VIA challenges. The scenario framework is organised around a matrix with two main axes: radiative forcing levels and socio-economic conditions. The radiative forcing levels (and the associated climate signal) are described by the new Representative Concentration Pathways. The second axis, socio-economic developments, comprises elements that affect the capacity for mitigation and adaptation, as well as the exposure to climate impacts. The proposed scenarios derived from this framework are limited in number, allow for comparison across various mitigation and adaptation levels, address a range of vulnerability characteristics, provide information across climate forcing and vulnerability states and span a full century time scale. Assessments based on the proposed scenario framework would strengthen cooperation between integrated-assessment modelers, climate modelers and vulnerability, impact and adaptation researchers, and most importantly, facilitate the development of more consistent and comparable research within and across communities.
Resumo:
The aim of this paper is to explore effects of macroeconomic variables on house prices and also, the lead-lag relationships of real estate markets to examine house price diffusion across Asian financial centres. The analysis is based on the Global Vector Auto-Regression (GVAR) model estimated using quarterly data for six Asian financial centres (Hong Kong, Tokyo, Seoul, Singapore, Taipei and Bangkok) from 1991Q1 to 2011Q2. The empirical results indicate that the global economic conditions play significant roles in shaping house price movements across Asian financial centres. In particular, a small open economy that heavily relies on international trade such as – Singapore and Tokyo - shows positive correlations between economy’s openness and house prices, consistent with the Balassa-Samuelson hypothesis in international trade. However, region-specific conditions do play important roles as determinants of house prices, partly due to restrictive housing policies and demand-supply imbalances, as found in Singapore and Bangkok.
Resumo:
Data analysis based on station observations reveals that many meteorological variables averaged over the Tibetan Plateau (TP) are closely correlated, and their trends during the past decades are well correlated with the rainfall trend of the Asian summer monsoon. However, such correlation does not necessarily imply causality. Further diagnosis confirms the existence of a weakening trend in TP thermal forcing, characterized by weakened surface sensible heat flux in spring and summer during the past decades. This weakening trend is associated with decreasing summer precipitation over northern South Asia and North China and increasing precipitation over northwestern China, South China, and Korea. An atmospheric general circulation model, the HadAM3, is employed to elucidate the causality between the weakening TP forcing and the change in the Asian summer monsoon rainfall. Results demonstrate that a weakening in surface sensible heating over the TP results in reduced summer precipitation in the plateau region and a reduction in the associated latent heat release in summer. These changes in turn result in the weakening of the near-surface cyclonic circulation surrounding the plateau and the subtropical anticyclone over the subtropical western North Pacific, similar to the results obtained from the idealized TP experiment in Part I of this study. The southerly that normally dominates East Asia, ranging from the South China Sea to North China, weakens, resulting in a weaker equilibrated Sverdrup balance between positive vorticity generation and latent heat release. Consequently, the convergence of water vapor transport is confined to South China, forming a unique anomaly pattern in monsoon rainfall, the so-called “south wet and north dry.” Because the weakening trend in TP thermal forcing is associated with global warming, the present results provide an effective means for assessing projections of regional climate over Asia in the context of global warming.
Resumo:
The time evolution of the circulation change at the end of the Baiu season is investigated using ERA40 data. An end-day is defined for each of the 23 years based on the 850 hPa θe value at 40˚Nin the 130-140˚E sector exceeding 330 K. Daily time series of variables are composited with respect to this day. These composite time-series exhibit a clearer and more rapid change in the precipitation and the large-scale circulation over the whole East Asia region than those performed using calendar days. The precipitation change includes the abrupt end of the Baiu rain, the northward shift of tropical convection perhaps starting a few days before this, and the start of the heavier rain at higher latitudes. The northward migration of lower tropospheric warm, moist tropical air, a general feature of the seasonal march in the region, is fast over the continent and slow over the ocean. By mid to late July the cooler air over the Sea of Japan is surrounded on 3 sides by the tropical air. It is suggestive that the large-scale stage has been set for a jump to the post-Baiu state, i.e., for the end of the Baiu season. Two likely triggers for the actual change emerge from the analysis. The first is the northward movement of tropical convection into the Philippine region. The second is an equivalent barotropic Rossby wave-train, that over a 10-day period develops downstream across Eurasia. It appears likely that in most years one or both mechanisms can be important in triggering the actual end of the Baiu season.
Resumo:
In today's global economic conditions, improving the productivity of the construction industry is becoming more pressing than ever. Several factors impact the efficiency of construction operatives, but motivation is among the most important. Since low productivity is one of the significant challenges facing the construction industry in the State of Kuwait, the objective of this case study is to identify, explore, and rank the relative importance of the factors perceived to impact the motivational level of master craftsmen involved in primary construction trades. To achieve this objective, a structured questionnaire survey comprising 23 factors, which were shortlisted based on relevant previous research on motivation, the input of local industry experts, and numerous interviews with skilled operatives, was distributed to a large number of master craftsmen. Using the “Relative Importance Index” technique, the following prominent factors are identified: (1) payment delay; (2) rework; (3) lack of a financial incentive scheme; (4) the extent of change orders during execution; (5) incompetent supervisors; (6) delays in responding to Requests For Information (RFI); (7) overcrowding and operatives interface; (8) unrealistic scheduling and performance expectation; (9) shortage of materials on site; and (10) drawings quality level. The findings can be used to provide industry practitioners with guidance for focusing, acting upon, and controlling the critical factors influencing the performance of master craftsmen, hence, assist in achieving an efficient utilization of the workforce, and a reasonable level of competitiveness and cost effective operation.
Resumo:
Understanding the surface O3 response over a “receptor” region to emission changes over a foreign “source” region is key to evaluating the potential gains from an international approach to abate ozone (O3) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O3 precursors, NOx, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O3 responses to NOx, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale “import sensitivity” as the ratio of the O3 response to the 20% reductions in foreign versus “domestic” (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O3 response to foreign emissions is largest in spring and late fall (0.7–0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8–1.6 ppb). High O3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O3 levels are typically highest and by the weaker relative response of annual incidences of daily maximum 8-h average O3 above 60 ppb to emission reductions in a foreign region (<10–20% of that to domestic) as compared to the annual mean response (up to 50% of that to domestic). Applying the ensemble annual mean results to changes in anthropogenic emissions from 1996 to 2002, we estimate a Northern Hemispheric increase in background surface O3 of about 0.1 ppb a−1, at the low end of the 0.1–0.5 ppb a−1 derived from observations. From an additional simulation in which global atmospheric methane was reduced, we infer that 20% reductions in anthropogenic methane emissions from a foreign source region would yield an O3 response in a receptor region that roughly equals that produced by combined 20% reductions of anthropogenic NOx, NMVOC, and CO emissions from the foreign source region.
Resumo:
We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using radiative forcing from the task force on hemispheric transport of air pollution source-receptor global chemical transport model simulations. These simulations model the transport of 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, nitric oxides (NOx), volatile organic compounds and carbon monoxide). From the equilibrium radiative forcing results we calculate global climate metrics, global warming potentials (GWPs) and global temperature change potentials (GTPs) and show how these depend on emission region, and can vary as functions of time. For the aerosol species, the GWP(100) values are −37±12, −46±20, and 350±200 for SO2, POM and BC respectively for the direct effects only. The corresponding GTP(100) values are −5.2±2.4, −6.5±3.5, and 50±33. This analysis is further extended by examining the temperature-change impacts in 4 latitude bands. This shows that the latitudinal pattern of the temperature response to emissions of the NTCFs does not directly follow the pattern of the diagnosed radiative forcing. For instance temperatures in the Arctic latitudes are particularly sensitive to NTCF emissions in the northern mid-latitudes. At the 100-yr time horizon the ARTPs show NOx emissions can have a warming effect in the northern mid and high latitudes, but cooling in the tropics and Southern Hemisphere. The northern mid-latitude temperature response to northern mid-latitude emissions of most NTCFs is approximately twice as large as would be implied by the global average.
Resumo:
Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42−). We examine changes in the tropospheric composition of O3, CH4, SO42− and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean ± 1 standard deviation) across multiple CTMs. We evaluate steady state O3 responses, including long-term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 ± 0.6 to 1.7 ± 2 mWm−2/Tg N yr−1), with some variation among models. Negative net RFs result from reductions in global CH4 (−162.6 ± 2 mWm−2 for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (−0.4 ± 0.2 to −0.7 ± 0.2 mWm−2/Tg C yr−1) and CO emissions (−0.13 ± 0.02 to −0.15 ± 0.02 mWm−2/Tg CO yr−1). Including the effect of O3 on CO2 uptake by vegetation likely makes these net RFs more negative by −1.9 to −5.2 mWm−2/Tg N yr−1, −0.2 to −0.7 mWm−2/Tg C yr−1, and −0.02 to −0.05 mWm−2/Tg CO yr−1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42−, regionally to hemispherically by O3, and globally by CH4. Global annual average SO42− responses to oxidant changes range from 0.4 ± 2.6 to −1.9 ± 1.3 Gg for NOx reductions, 0.1 ± 1.2 to −0.9 ± 0.8 Gg for NMVOC reductions, and −0.09 ± 0.5 to −0.9 ± 0.8 Gg for CO reductions, suggesting additional research is needed. The 100-year global warming potentials (GWP100) are calculated for the global CH4 reduction (20.9 ± 3.7 without stratospheric O3 or water vapor, 24.2 ± 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (−18.7 ± 25.9 to −1.9 ± 8.7 for NOx, 4.8 ± 1.7 to 8.3 ± 1.9 for NMVOC, and 1.5 ± 0.4 to 1.7 ± 0.5 for CO). Variation in GWP100 for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion of O3 precursors in future policies that address air quality and climate change simultaneously. Both global net RF and GWP100 are more sensitive to NOx and NMVOC reductions from South Asia than the other three regions.
Resumo:
Much of mainstream economic analysis assumes that markets adjust smoothly, through prices, to changes in economic conditions. However, this is not necessarily the case for local housing markets, whose spatial structures may exhibit persistence, so that conditions may not be those most suited to the requirements of modern-day living. Persistence can arise from the existence of transaction costs. The paper tests the proposition that housing markets in Inner London exhibit a degree of path dependence, through the construction of a three-equation model, and examines the impact of variables constructed for the 19th and early 20th centuries on modern house prices. These include 19th-century social structures, slum clearance programmes and the 1908 underground network. Each is found to be significant. The tests require the construction of novel historical datasets, which are also described in the paper.
Resumo:
The Pax Americana and the grand strategy of hegemony (or “Primacy”) that underpins it may be becoming unsustainable. Particularly in the wake of exhausting wars, the Global Financial Crisis, and the shift of wealth from West to East, it may no longer be possible or prudent for the United States to act as the unipolar sheriff or guardian of a world order. But how viable are the alternatives, and what difficulties will these alternatives entail in their design and execution? This analysis offers a sympathetic but critical analysis of alternative U.S. National Security Strategies of “retrenchment” that critics of American diplomacy offer. In these strategies, the United States would anticipate the coming of a more multipolar world and organize its behavior around the dual principles of “concert” and “balance,” seeking a collaborative relationship with other great powers, while being prepared to counterbalance any hostile aggressor that threatens world order. The proponents of such strategies argue that by scaling back its global military presence and its commitments, the United States can trade prestige for security, shift burdens, and attain a more free hand. To support this theory, they often look to the 19th-century concert of Europe as a model of a successful security regime and to general theories about the natural balancing behavior of states. This monograph examines this precedent and measures its usefulness for contemporary statecraft to identify how great power concerts are sustained and how they break down. The project also applies competing theories to how states might behave if world politics are in transition: Will they balance, bandwagon, or hedge? This demonstrates the multiple possible futures that could shape and be shaped by a new strategy. viii A new strategy based on an acceptance of multipolarity and the limits of power is prudent. There is scope for such a shift. The convergence of several trends—including transnational problems needing collaborative efforts, the military advantages of defenders, the reluctance of states to engage in unbridled competition, and hegemony fatigue among the American people—means that an opportunity exists internationally and at home for a shift to a new strategy. But a Concert-Balance strategy will still need to deal with several potential dilemmas. These include the difficulty of reconciling competitive balancing with cooperative concerts, the limits of balancing without a forward-reaching onshore military capability, possible unanticipated consequences such as a rise in regional power competition or the emergence of blocs (such as a Chinese East Asia or an Iranian Gulf), and the challenge of sustaining domestic political support for a strategy that voluntarily abdicates world leadership. These difficulties can be mitigated, but they must be met with pragmatic and gradual implementation as well as elegant theorizing and the need to avoid swapping one ironclad, doctrinaire grand strategy for another.
Resumo:
As one of the most important geological events in Cenozoic era, the uplift of the Tibetan Plateau (TP) has had profound influences on the Asian and global climate and environment evolution. During the past four decades, many scholars from China and abroad have studied climatic and environmental effects of the TP uplift by using a variety of geological records and paleoclimate numerical simulations. The existing research results enrich our understanding of the mechanisms of Asian monsoon changes and interior aridification, but so far there are still a lot of issues that need to be thought deeply and investigated further. This paper attempts to review the research on the influence of the TP uplift on the Asian monsoon-arid environment, summarize three types of numerical simulations including bulk-plateau uplift, phased uplift and sub-regional uplift, and especially to analyze regional differences in responses of climate and environment to different forms of tectonic uplifts. From previous modeling results, the land-sea distribution and the Himalayan uplift may have a large effect in the establishment and development of the South Asian monsoon. However, the formation and evolution of the monsoon in northern East Asia, the intensified dryness north of the TP and enhanced Asian dust cycle may be more closely related to the uplift of the main body, especially the northern part of the TP. In this review, we also discuss relative roles of the TP uplift and other impact factors, origins of the South Asian monsoon and East Asian monsoon, feedback effects and nonlinear responses of climatic and environmental changes to the plateau uplift. Finally, we make comparisons between numerical simulations and geological records, discuss their uncertainties, and highlight some problems worthy of further studying.
Resumo:
BACKGROUND: Reduction of vegetation height is recommended as a management strategy for controlling rodent pests of rice in South-east Asia, but there are limited field data to assess its effectiveness. The breeding biology of the main pest species of rodent in the Philippines, Rattus tanezumi, suggests that habitat manipulation in irrigated rice–coconut cropping systems may be an effective strategy to limit the quality and availability of their nesting habitat. The authors imposed a replicated manipulation of vegetation cover in adjacent coconut groves during a single rice-cropping season, and added artificial nest sites to facilitate capture and culling of young. RESULTS: Three trapping sessions in four rice fields (two treatments, two controls) adjacent to coconut groves led to the capture of 176 R. tanezumi, 12Rattus exulans and seven Chrotomysmindorensis individuals. There was no significant difference in overall abundance between crop stages or between treatments, and there was no treatment effect on damage to tillers or rice yield. Only two R. tanezumi were caught at the artificial nest sites. CONCLUSION: Habitat manipulation to reduce the quality of R. tanezumi nesting habitat adjacent to rice fields is not effective as a lone rodent management tool in rice–coconut cropping systems.
Resumo:
This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C.
Resumo:
Aerosol sources, transport, and sinks are simulated, and aerosol direct radiative effects are assessed over the Indian Ocean for the Indian Ocean Experiment (INDOEX) Intensive Field Phase during January to March 1999 using the Laboratoire de Me´te´orologie Dynamique (LMDZT) general circulation model. The model reproduces the latitudinal gradient in aerosol mass concentration and optical depth (AOD). The model-predicted aerosol concentrations and AODs agree reasonably well with measurements but are systematically underestimated during high-pollution episodes, especially in the month of March. The largest aerosol loads are found over southwestern China, the Bay of Bengal, and the Indian subcontinent. Aerosol emissions from the Indian subcontinent are transported into the Indian Ocean through either the west coast or the east coast of India. Over the INDOEX region, carbonaceous aerosols are the largest contributor to the estimated AOD, followed by sulfate, dust, sea salt, and fly ash. During the northeast winter monsoon, natural and anthropogenic aerosols reduce the solar flux reaching the surface by 25 W m�2, leading to 10–15% less insolation at the surface. A doubling of black carbon (BC) emissions from Asia results in an aerosol single-scattering albedo that is much smaller than in situ measurements, reflecting the fact that BC emissions are not underestimated in proportion to other (mostly scattering) aerosol types. South Asia is the dominant contributor to sulfate aerosols over the INDOEX region and accounts for 60–70% of the AOD by sulfate. It is also an important but not the dominant contributor to carbonaceous aerosols over the INDOEX region with a contribution of less than 40% to the AOD by this aerosol species. The presence of elevated plumes brings significant quantities of aerosols to the Indian Ocean that are generated over Africa and Southeast and east Asia.