214 resultados para EXTRATROPICAL CYCLONES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An idealised modelling study of sting-jet cyclones is presented. Sting jets are descending mesoscale jets that occur in some extratropical cyclones and produce localised regions of strong low-level winds in the frontal fracture region. Moist baroclinic lifecycle (LC1) simulations are performed with modifications to produce cyclones resembling observed sting-jet cyclones. A sting jet exists in the idealised control cyclone with similar characteristics to the sting jet in a simulation of windstorm Gudrun (a confirmed sting-jet case). Unlike in windstorm Gudrun, a low-level layer of strong moist static stability prohibits the descent of the strong winds from above the boundary layer to the surface in the idealised case. Conditional symmetric instability (CSI) exists in the cloud head and dissipates as the sting jet leaves the cloud head and descends. The descending, initially moist, sting-jet trajectories consistently have negative or near-zero saturated moist potential vorticity but moist static stability and inertial stability, consistent with CSI release; the moist static stability becomes negative during the period of most rapid descent, by which time the air is relatively dry implying conditional instability release is unlikely. Sensitivity experiments show that the existence of the sting jet is robust to changes in the initial state, and that the initial tropospheric static stability significantly impacts the descent rate of the sting jet. Inertial and conditional instability are probably being released in the experiment with the weakest initial static stability. This suggests that sting jets can arise through the release of all three instabilities associated with negative saturated moist potential vorticity. While evaporative cooling occurs along the sting-jet trajectories, a sensitivity experiment with evaporation effects turned off shows no significant change to the wind strength or descent rate of the sting jet implying that instability release is the dominant sting-jet driving mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The DIAMET (DIAbatic influences on Mesoscale structures in ExTratropical storms) project aims to improve forecasts of high-impact weather in extratropical cyclones through field measurements, high-resolution numerical modeling, and improved design of ensemble forecasting and data assimilation systems. This article introduces DIAMET and presents some of the first results. Four field campaigns were conducted by the project, one of which, in late 2011, coincided with an exceptionally stormy period marked by an unusually strong, zonal North Atlantic jet stream and a succession of severe windstorms in northwest Europe. As a result, December 2011 had the highest monthly North Atlantic Oscillation index (2.52) of any December in the last 60 years. Detailed observations of several of these storms were gathered using the UK’s BAe146 research aircraft and extensive ground-based measurements. As an example of the results obtained during the campaign, observations are presented of cyclone Friedhelm on 8 December 2011, when surface winds with gusts exceeding 30 m s-1 crossed central Scotland, leading to widespread disruption to transportation and electricity supply. Friedhelm deepened 44 hPa in 24 hours and developed a pronounced bent-back front wrapping around the storm center. The strongest winds at 850 hPa and the surface occurred in the southern quadrant of the storm, and detailed measurements showed these to be most intense in clear air between bands of showers. High-resolution ensemble forecasts from the Met Office showed similar features, with the strongest winds aligned in linear swaths between the bands, suggesting that there is potential for improved skill in forecasts of damaging winds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Flow in geophysical fluids is commonly summarized by coherent streams, for example conveyor belt flows in extratropical cyclones or jet streaks in the upper troposphere. Typically, parcel trajectories are calculated from the flow field and subjective thresholds are used to distinguish coherent streams of interest. This methodology contribution develops a more objective approach to distinguish coherent airstreams within extratropical cyclones. Agglomerative clustering is applied to trajectories along with a method to identify the optimal number of cluster classes. The methodology is applied to trajectories associated with the low-level jets of a well-studied extratropical cyclone. For computational efficiency, a constraint that trajectories must pass through these jet regions is applied prior to clustering; the partitioning into different airstreams is then performed by the agglomerative clustering. It is demonstrated that the methodology can identify the salient flow structures of cyclones: the warm and cold conveyor belts. A test focusing on the airstreams terminating at the tip of the bent-back front further demonstrates the success of the method in that it can distinguish fine-scale flow structure such as descending sting jet airstreams.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prediction of extratropical cyclones by the European Centre for Medium Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) Ensemble Prediction Systems (EPS) is investigated using a storm-tracking forecast verifica-tion methodology. The cyclones are identified and tracked along the forecast trajectories so that statistics can be generated to determine the rate at which the position and intensity of the forecasted cyclones diverge from the corresponding analysed cyclones with forecast time. Overall the ECMWF EPS has a slightly higher level of performance than the NCEP EPS. However, in the southern hemisphere the NCEP EPS has a slightly higher level of skill for the intensity of the storms. The results from both EPS indicate a higher level of predictive skill for the position of extratropical cyclones than their intensity and show that there is a larger spread in intensity than position. The results also illustrate several benefits an EPS can offer over a deterministic forecast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The existence of sting jets as a potential source of damaging surface winds during the passage of extratropical cyclones has recently been recognized However, there are still very few published studies on the subject Furthermore, although ills known that other models are capable of reproducing sting jets, in the published literature only one numerical model [the Met Office Unified Model (MetUM)] has been used to numerically analyze these phenomena This article alms to improve our understanding of the processes that contribute to the development of sting jets and show that model differences affect the evolution of modeled sting jets A sting jet event during the passage of a cyclone over the United Kingdom on 26 February 2002 has been simulated using two mesoscale models namely the MetUM and the Consortium for Small Scale Modeling (COSMO) model to compare their performance Given the known critical importance of vertical resolution in the simulation of sting jets the vertical resolution of both models has been enhanced with respect to their operational versions Both simulations have been verified against surface measurements of maximum gusts, satellite imagery and Met Office operational synoptic analyses, as well as operational analyses from the ECMWF It is shown that both models are capable of reproducing sting jets with similar, though not identical. features Through the comparison of the results from these two models, the relevance of physical mechanisms, such as evaporative cooling and the release of conditional symmetric instability, in the generation and evolution of sting jets is also discussed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sting jets are transient mesoscale jets of air that descend from the tip of the cloud head towards the top of the boundary layer in severe extratropical cyclones and can lead to damaging surface wind gusts. This recently identified jet is distinct from the well-documented jets associated with the cold and warm conveyor belts. One mechanism proposed for their development is the release of conditional symmetric instability (CSI). Here the spatial distribution and temporal evolution of several CSI diagnostics in four severe storms are analysed. A sting jet has been identified in three of these storms; for comparison, we also analysed one storm that did not have a sting jet, even though it hadmany of the apparent features of sting-jet storms. The sting-jet storms are distinct from the non-sting-jet storms by having much greater andmore extensive conditional instability (CI) and CSI. CSI is released by ascending air parcels in the cloud head in two of the sting-jet storms and by descending air parcels in the other sting-jet storm. By contrast, only weak CI to ascending air parcels is present at the cloud-head tip in the non-sting-jet storm. CSI released by descending air parcels, as diagnosed by decaying downdraught slantwise convective available potential energy (DSCAPE), is collocated with the sting jets in all three sting-jet storms and has a localisedmaximum in two of them. Consistent evolutions of saturated moist potential vorticity are found.We conclude that CSI release has a role in the generation of the sting jet, that the sting jet may be driven by the release of instability to both ascending and descending parcels, and that DSCAPE could be used as a discriminating diagnostic for the sting jet based on these four case-studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sting jets are transient coherent mesoscale strong wind features that can cause damaging surface wind gusts in extratropical cyclones. Currently, we have only limited knowledge of their climatological characteristics. Numerical weather prediction models require enough resolution to represent slantwise motions with horizontal scales of tens of kilometres and vertical scales of just a few hundred metres to represent sting jets. Hence, the climatological characteristics of sting jets and the associated extratropical cyclones can not be determined by searching for sting jets in low-resolution datasets such as reanalyses. A diagnostic is presented and evaluated for the detection in low-resolution datasets of atmospheric regions from which sting jets may originate. Previous studies have shown that conditional symmetric instability (CSI) is present in all storms studied with sting jets, while other, rapidly developing storms of a similar character but no CSI do not develop sting jets. Therefore, we assume that the release of CSI is needed for sting jets to develop. While this instability will not be released in a physically realistic way in low-resolution models (and hence sting jets are unlikely to occur), it is hypothesized that the signature of this instability (combined with other criteria that restrict analysis to moist mid-tropospheric regions in the neighbourhood of a secondary cold front) can be used to identify cyclones in which sting jets occurred in reality. The diagnostic is evaluated, and appropriate parameter thresholds defined, by applying it to three case studies simulated using two resolutions (with CSI-release resolved in only the higher-resolution simulation).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extratropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact due to the strong surface winds and associated storm surges in coastal areas. Here we show that sting jets are a common feature of windstorms; up to a third of the 100 most intense North Atlantic winter windstorms over the last two decades satisfy conditions for sting jets. The sting jet is a mesoscale descending airstream that can cause strong near-surface winds in the dry slot of the cyclone, a region not usually associated with strong winds. Despite their localized transient nature these sting jets can cause significant damage, a prominent example being the storm that devastated southeast England on 16 October 1987. We present the first regional climatology of windstorms with sting jets. Previously analysed sting jet cases appear to have been exceptional in their track over northwest Europe rather than in their strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sensitivity to the horizontal resolution of the climate, anthropogenic climate change, and seasonal predictive skill of the ECMWF model has been studied as part of Project Athena—an international collaboration formed to test the hypothesis that substantial progress in simulating and predicting climate can be achieved if mesoscale and subsynoptic atmospheric phenomena are more realistically represented in climate models. In this study the experiments carried out with the ECMWF model (atmosphere only) are described in detail. Here, the focus is on the tropics and the Northern Hemisphere extratropics during boreal winter. The resolutions considered in Project Athena for the ECMWF model are T159 (126 km), T511 (39 km), T1279 (16 km), and T2047 (10 km). It was found that increasing horizontal resolution improves the tropical precipitation, the tropical atmospheric circulation, the frequency of occurrence of Euro-Atlantic blocking, and the representation of extratropical cyclones in large parts of the Northern Hemisphere extratropics. All of these improvements come from the increase in resolution from T159 to T511 with relatively small changes for further resolution increases to T1279 and T2047, although it should be noted that results from this very highest resolution are from a previously untested model version. Problems in simulating the Madden–Julian oscillation remain unchanged for all resolutions tested. There is some evidence that increasing horizontal resolution to T1279 leads to moderate increases in seasonal forecast skill during boreal winter in the tropics and Northern Hemisphere extratropics. Sensitivity experiments are discussed, which helps to foster a better understanding of some of the resolution dependence found for the ECMWF model in Project Athena

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The World Weather Research Programme (WWRP) and the World Climate Research Programme (WCRP) have identified collaborations and scientific priorities to accelerate advances in analysis and prediction at subseasonal-to-seasonal time scales, which include i) advancing knowledge of mesoscale–planetary-scale interactions and their prediction; ii) developing high-resolution global–regional climate simulations, with advanced representation of physical processes, to improve the predictive skill of subseasonal and seasonal variability of high-impact events, such as seasonal droughts and floods, blocking, and tropical and extratropical cyclones; iii) contributing to the improvement of data assimilation methods for monitoring and predicting used in coupled ocean–atmosphere–land and Earth system models; and iv) developing and transferring diagnostic and prognostic information tailored to socioeconomic decision making. The document puts forward specific underpinning research, linkage, and requirements necessary to achieve the goals of the proposed collaboration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Potential vorticity (PV) succinctly describes the evolution of large-scale atmospheric flow because of its material conservation and invertibility properties. However, diabatic processes in extratropical cyclones can modify PV and influence both mesoscale weather and the evolution of the synoptic-scale wave pattern. In this investigation, modification of PV by diabatic processes is diagnosed in a Met Office Unified Model (MetUM) simulation of a North Atlantic cyclone using a set of PV tracers. The structure of diabatic PV within the extratropical cyclone is investigated and linked to the processes responsible for it. On the mesoscale, a tripole of diabatic PV is generated across the tropopause fold extending down to the cold front. The structure results from a dipole in heating across the frontal interface due to condensation in the warm conveyor belt flanking the upper side of the fold and evaporation of precipitation in the dry intrusion and below. On isentropic surfaces intersecting the tropopause, positive diabatic PV is generated on the stratospheric side, while negative diabatic PV is generated on the tropospheric side. The stratospheric diabatic PV is generated primarily by long-wave cooling which peaks at the tropopause itself due to the sharp gradient in humidity there. The tropospheric diabatic PV originates locally from the long-wave radiation and non-locally by advection out of the top of heating associated with the large-scale cloud, convection and boundary layer schemes. In most locations there is no diabatic modification of PV at the tropopause itself but diabatic PV anomalies would influence the tropopause indirectly through the winds they induce and subsequent advection. The consequences of this diabatic PV dipole for the evolution of synoptic-scale wave patterns are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective cyclone tracking applied to a 30-yr reanalysis dataset shows that cyclone development in the summer and autumn seasons is active in the tropics and extratropics and inactive in the subtropics. To understand this geographically bimodal distribution of cyclone development associated with tropical and extratropical cyclones quantitatively, the direct relationship between cyclone types and their environments are assessed by using a parameter space of environmental variables [environmental parameter space (EPS)]. The number of cyclones is analyzed in terms of two different factors: the environmental conditions favorable for cyclone development and the area size that satisfies the favorable condition. The EPS analysis is mainly conducted for two representative environmental parameters that are commonly used for cyclone analysis: potential intensity for tropical cyclones and baroclinicity for extratropical cyclones. The geographically bimodal distribution is attributed to the high sensitivity of the cyclone development to the change in the environmental fields from tropics to extratropics. In addition, the bimodal distribution is partly attributed to the rapid change in the environmental fields from tropics to extratropics. The EPS analysis also shows that other environmental parameters, including relative humidity and vertical velocity, may enhance the contrast between the tropics (extratropics) and subtropics, whereas they are not essential for determining cyclone types. The relationship between cyclones and their environments is found to be similar between the hemispheres in the EPS, although the geographical distribution, particularly the longitudinal uniformity, is markedly different between the hemispheres.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extratropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact due to the strong surface winds and associated storm surges in coastal areas. Here we show that sting jets are a common feature of windstorms; up to a third of the 100 most intense North Atlantic winter windstorms over the last two decades satisfy conditions for sting jets. The sting jet is a mesoscale descending airstream that can cause strong near-surface winds in the dry slot of the cyclone, a region not usually associated with strong winds. Despite their localized transient nature these sting jets can cause significant damage, a prominent example being the storm that devastated southeast England on 16 October 1987. We present the first regional climatology of windstorms with sting jets. Previously analysed sting jet cases appear to have been exceptional in their track over northwest Europe rather than in their strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identifying the source of atmospheric rivers: Are they rivers of moisture exported from the subtropics or footprints left behind by poleward travelling storms? The term atmospheric river is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high impact flooding events. However, there remains some debate as to how these filaments form. In this paper we analyse the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front which sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone's warm sector, and not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the centre of a cyclone (as suggested by the term atmospheric river), these filaments are, in-fact, the result of water vapor exported from the cyclone and thus they represent the footprints left behind as cyclones travel polewards from subtropics.