45 resultados para Dynamic control
Resumo:
A dynamic recurrent neural network (DRNN) is used to input/output linearize a control affine system in the globally linearizing control (GLC) structure. The network is trained as a part of a closed loop that involves a PI controller, the goal is to use the network, as a dynamic feedback, to cancel the nonlinear terms of the plant. The stability of the configuration is guarantee if the network and the plant are asymptotically stable and the linearizing input is bounded.
Resumo:
A three degrees of freedom industrial robot is controlled by applying PID self-tuning (PID/ST) controllers. This control is considered as a corrective term to a nominal value, centrally computed from an inaccurate and/ or simplified dynamic model. An identification scheme on an assumed linear plant describing the deviation from the desired trajectory is employed in order to tune the controller coefficients and thus accomplish a behaviour prescribed through a desired pole placement. A salient feature of our approach is the decentralized nature of the controllers producing the corrective term for each joint. This opens the way to practical implementation, as recent computing requirement calculations for similar set-ups have shown in the literature. Numerical results are presented.
Resumo:
This paper describes an experimental application of constrained predictive control and feedback linearisation based on dynamic neural networks. It also verifies experimentally a method for handling input constraints, which are transformed by the feedback linearisation mappings. A performance comparison with a PID controller is also provided. The experimental system consists of a laboratory based single link manipulator arm, which is controlled in real time using MATLAB/SIMULINK together with data acquisition equipment.
Resumo:
The authors present an active vision system which performs a surveillance task in everyday dynamic scenes. The system is based around simple, rapid motion processors and a control strategy which uses both position and velocity information. The surveillance task is defined in terms of two separate behavioral subsystems, saccade and smooth pursuit, which are demonstrated individually on the system. It is shown how these and other elementary responses to 2D motion can be built up into behavior sequences, and how judicious close cooperation between vision and control results in smooth transitions between the behaviors. These ideas are demonstrated by an implementation of a saccade to smooth pursuit surveillance system on a high-performance robotic hand/eye platform.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.
Resumo:
Neurovascular coupling in response to stimulation of the rat barrel cortex was investigated using concurrent multichannel electrophysiology and laser Doppler flowmetry. The data were used to build a linear dynamic model relating neural activity to blood flow. Local field potential time series were subject to current source density analysis, and the time series of a layer IV sink of the barrel cortex was used as the input to the model. The model output was the time series of the changes in regional cerebral blood flow (CBF). We show that this model can provide excellent fit of the CBF responses for stimulus durations of up to 16 s. The structure of the model consisted of two coupled components representing vascular dilation and constriction. The complex temporal characteristics of the CBF time series were reproduced by the relatively simple balance of these two components. We show that the impulse response obtained under the 16-s duration stimulation condition generalised to provide a good prediction to the data from the shorter duration stimulation conditions. Furthermore, by optimising three out of the total of nine model parameters, the variability in the data can be well accounted for over a wide range of stimulus conditions. By establishing linearity, classic system analysis methods can be used to generate and explore a range of equivalent model structures (e.g., feed-forward or feedback) to guide the experimental investigation of the control of vascular dilation and constriction following stimulation.
Resumo:
The rising share of intangibles in economies worldwide highlights the crucial role of knowledge-intensive and creative industries in current and future wealth generation. The recognition of this trend has led to intense competition in these industries. At the micro-level, firms from both advanced and emerging economies are globally dispersing their value chains to control costs and leverage capabilities. The geography of innovation is the outcome of a dynamic process whereby firms from emerging economies strive to catch-up with advanced economy competitors, creating strong pressures for continued innovation. However, two distinct strategies can be discerned with regard to the control of the value chain. A vertical integration strategy emphasizes taking advantage of ‘linkage economies’ whereby controlling multiple value chain activities enhances the efficiency and effectiveness of each one of them. In contrast, a specialization strategy focuses on identifying and controlling the creative heart of the value chain, while outsourcing all other activities. The global mobile handset industry is used as the template to illustrate the theory.
Resumo:
Mycoplasma gallisepticum (MG) is a bacterium that causes respiratory disease in chickens, leading to reduced egg production. A dynamic simulation model was developed that can be used to assess the costs and benefits of control using antimicrobials or vaccination in caged or free range systems. The intended users are veterinarians and egg producers. A user interface is provided for input of flock specific parameters. The economic consequence of an MG outbreak is expressed as a reduction in expected egg output. The model predicts that either vaccination or microbial treatment can approximately halve potential losses from MG in some circumstances. Sensitivity analysis is used to test assumptions about infection rate and timing of an outbreak. Feedback from veterinarians points to the value of the model as a discussion tool with producers.
Resumo:
There are well-known difficulties in making measurements of the moisture content of baked goods (such as bread, buns, biscuits, crackers and cake) during baking or at the oven exit; in this paper several sensing methods are discussed, but none of them are able to provide direct measurement with sufficient precision. An alternative is to use indirect inferential methods. Some of these methods involve dynamic modelling, with incorporation of thermal properties and using techniques familiar in computational fluid dynamics (CFD); a method of this class that has been used for the modelling of heat and mass transfer in one direction during baking is summarized, which may be extended to model transport of moisture within the product and also within the surrounding atmosphere. The concept of injecting heat during the baking process proportional to the calculated heat load on the oven has been implemented in a control scheme based on heat balance zone by zone through a continuous baking oven, taking advantage of the high latent heat of evaporation of water. Tests on biscuit production ovens are reported, with results that support a claim that the scheme gives more reproducible water distribution in the final product than conventional closed loop control of zone ambient temperatures, thus enabling water content to be held more closely within tolerance.
Resumo:
Near ground maneuvers, such as hover, approach and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground often using ultrasonic or laser range finders. Near ground maneuvers are naturally mastered by flying birds and insects as objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-to-contact (Tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for Unmanned Aerial Vehicles (UAV) relative ground distance control. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the Tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented on-board an experimental quadrotor UAV and shown not only to successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.
Resumo:
Biological models of an apoptotic process are studied using models describing a system of differential equations derived from reaction kinetics information. The mathematical model is re-formulated in a state-space robust control theory framework where parametric and dynamic uncertainty can be modelled to account for variations naturally occurring in biological processes. We propose to handle the nonlinearities using neural networks.
Resumo:
In this paper we report coordinated multispacecraft and ground-based observations of a double substorm onset close to Scandinavia on November 17, 1996. The Wind and the Geotail spacecraft, which were located in the solar wind and the subsolar magnetosheath, respectively, recorded two periods of southward directed interplanetary magnetic field (IMF). These periods were separated by a short northward IMF excursion associated with a solar wind pressure pulse, which compressed the magnetosphere to such a degree that Geotail for a short period was located outside the bow shock. The first period of southward IMF initiated a substorm growth. phase, which was clearly detected by an array of ground-based instrumentation and by Interball in the northern tail lobe. A first substorm onset occurred in close relation to the solar wind pressure pulse impinging on the magnetopause and almost simultaneously with the northward turning of the IMF. However, this substorm did not fully develop. In clear association with the expansion of the magnetosphere at the end of the pressure pulse, the auroral expansion was stopped, and the northern sky cleared. We will present evidence that the change in the solar wind dynamic pressure actively quenched the energy available for any further substorm expansion. Directly after this period, the magnetometer network detected signatures of a renewed substorm growth phase, which was initiated by the second southward turning of the IMF and which finally lead to a second, and this time complete, substorm intensification. We have used our multipoint observations in order to understand the solar wind control of the substorm onset and substorm quenching. The relative timings between the observations on the various satellites and on the ground were used to infer a possible causal relationship between the solar wind pressure variations and consequent substorm development. Furthermore, using a relatively simple algorithm to model the tail lobe field and the total tail flux, we show that there indeed exists a close relationship between the relaxation of a solar wind pressure pulse, the reduction of the tail lobe field, and the quenching of the initial substorm.
Resumo:
Near-ground maneuvers, such as hover, approach, and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground, often using ultrasonic or laser range finders. Near-ground maneuvers are naturally mastered by flying birds and insects because objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-tocontact (tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for relative ground distance control for unmanned aerial vehicles. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented onboard an experimental quadrotor unmannedaerial vehicle and is shown to not only successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.
Resumo:
This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.
Resumo:
The investigation of bilingualism and cognition has been enriched by recent developments in functional magnetic resonance imaging (fMRI). Extending how bilingual experience shapes cognition, this review examines recent fMRI studies adopting executive control tasks with minimal or no linguistic demands. Across a range of studies with divergent ages and language pairs spoken by bilinguals, brain regions supporting executive control significantly overlap with brain regions recruited for language control (Abutalebi & Green, this issue). Furthermore, limited but emerging studies on resting-state networks are addressed, which suggest more coherent spatially distributed functional connectivity in bilinguals. Given the dynamic nature of bilingual experience, it is essential to consider both task-related functional networks (externally-driven engagement), and resting-state networks, such as default mode network (internal control). Both types of networks are important elements of bilingual language control, which relies on domain-general executive control.