58 resultados para Disseminated Intravascular Coagulation
Resumo:
Pseudomonas syringae pv. phaseolicola causes halo blight of the common bean, Phaseolus vulgaris, worldwide and remains difficult to control. Races of the pathogen cause either disease symptoms or a resistant hypersensitive response on a series of differentially reacting bean cultivars. The molecular genetics of the interaction between P. syringae pv. phaseolicola and bean, and the evolution of bacterial virulence, have been investigated in depth and this research has led to important discoveries in the field of plant-microbe interactions. In this review, we discuss several of the areas of study that chart the rise of P. syringae pv. phaseolicola from a common pathogen of bean plants to a molecular plant-pathogen supermodel bacterium. Taxonomy: Bacteria; Proteobacteria, gamma subdivision; order Pseudomonadales; family Pseudomonadaceae; genus Pseudomonas; species Pseudomonas syringae; Genomospecies 2; pathogenic variety phaseolicola. Microbiological properties: Gram-negative, aerobic, motile, rod-shaped, 1.5 µm long, 0.7-1.2 µm in diameter, at least one polar flagellum, optimal temperatures for growth of 25-30 °C, oxidase negative, arginine dihydrolase negative, levan positive and elicits the hypersensitive response on tobacco. Host range: Major bacterial disease of common bean (Phaseolus vulgaris) in temperate regions and above medium altitudes in the tropics. Natural infections have been recorded on several other legume species, including all members of the tribe Phaseoleae with the exception of Desmodium spp. and Pisum sativum. Disease symptoms: Water-soaked lesions on leaves, pods, stems or petioles, that quickly develop greenish-yellow haloes on leaves at temperatures of less than 23 °C. Infected seeds may be symptomless, or have wrinkled or buttery-yellow patches on the seed coat. Seedling infection is recognized by general chlorosis, stunting and distortion of growth. Epidemiology: Seed borne and disseminated from exudation by water-splash and wind occurring during rainfall. Bacteria invade through wounds and natural openings (notably stomata). Weedy and cultivated alternative hosts may also harbour the bacterium. Disease control: Some measure of control is achieved with copper formulations and streptomycin. Pathogen-free seed and resistant cultivars are recommended. Useful websites: Pseudomonas-plant interaction http://www.pseudomonas-syringae.org/; PseudoDB http://xbase.bham.ac.uk/pseudodb/; Plant Associated and Environmental Microbes Database (PAMDB) http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; PseudoMLSA Database http://www.uib.es/microbiologiaBD/Welcome.html.
Resumo:
Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that the adverse health effects of airborne particles may scale with the airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter particles emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m high. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and indicate a loss of nanoparticles from air aged during less turbulent conditions. These results suggest that nanoparticles are lost by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health.
Resumo:
The drug busulphan is known to be cytotoxic to migrating primordial germ cells (PGCs). A technique is described in which doses of 0, 25, 50 and 250 micrograms busulphan in 40 microliters sesame oil were injected into the yolk of White Leghorn eggs incubated for 0, 24, 48 and 72 h. The percentage survival values of these embryos showed that the older the embryo at the time of injection, the greater the survival. Increasing the dose of busulphan decreased the survival. The percentage of embryos showing abnormalities increased with higher doses of busulphan. The number of germ cells in histological sections from gonads of 16-day embryos was estimated and in embryos treated with 50 micrograms and 250 micrograms busulphan the number of germ cells was significantly less than in the controls. Eggs were injected with 50 micrograms busulphan at 24-30 h, and at 50-55 h the embryos received an intravascular injection of a germinal crescent cell suspension containing PGCs from Rhode Island Red embryos. Twenty hatchlings from these experiments were raised to sexual maturity. All these birds were fertile and half of the breeding groups producing offspring from the transferred germ cells at a rate of about 35% of the total. The technique would improve the efficiency of producing transgenic gametes.
Resumo:
Response surface methodology was used to study the effect of temperature, cutting time, and calcium chloride addition level on curd moisture content, whey fat losses, and curd yield. Coagulation and syneresis were continuously monitored using 2 optical sensors detecting light backscatter. The effect of the factors on the sensors’ response was also examined. Retention of fat during cheese making was found to be a function of cutting time and temperature, whereas curd yield was found to be a function of those 2 factors and the level of calcium chloride addition. The main effect of temperature on curd moisture was to increase the rate at which whey was expelled. Temperature and calcium chloride addition level were also found to affect the light backscatter profile during coagulation whereas the light backscatter profile during syneresis was a function of temperature and cutting time. The results of this study suggest that there is an optimum firmness at which the gel should be cut to achieve maximum retention of fat and an optimum curd moisture content to maximize product yield and quality. It was determined that to maximize curd yield and quality, it is necessary to maximize firmness while avoiding rapid coarsening of the gel network and microsyneresis. These results could contribute to the optimization of the cheese-making process.
Resumo:
The potential of a fibre optic sensor, detecting light backscatter in a cheese vat during coagulation and syneresis, to predict curd moisture, fat loses and curd yield was examined. Temperature, cutting time and calcium levels were varied to assess the strength of the predictions over a range of processing conditions. Equations were developed using a combination of independent variables, milk compositional and light backscatter parameters. Fat losses, curd yield and curd moisture content were predicted with a standard error of prediction (SEP) of +/- 2.65 g 100 g(-1) (R-2 = 0.93), +/- 0.95% (R-2 = 0.90) and +/- 1.43% (R-2 = 0.94), respectively. These results were used to develop a model for predicting curd moisture as a function of time during syneresis (SEP = +/- 1.72%; R-2 = 0.95). By monitoring coagulation and syneresis, this sensor technology could be employed to control curd moisture content, thereby improving process control during cheese manufacture. (c) 2007 Elsevier Ltd. All rights reserved..
Resumo:
This paper reviews the current state of development of both near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for process monitoring, quality control, and authenticity determination in cheese processing. Infrared spectroscopy has been identified as an ideal process analytical technology tool, and recent publications have demonstrated the potential of both NIR and MIR spectroscopy, coupled with chemometric techniques, for monitoring coagulation, syneresis, and ripening as well as determination of authenticity, composition, sensory, and rheological parameters. Recent research is reviewed and compared on the basis of experimental design, spectroscopic and chemometric methods employed to assess the potential of infrared spectroscopy as a technology for improving process control and quality in cheese manufacture. Emerging research areas for these technologies, such as cheese authenticity and food chain traceability, are also discussed.
Resumo:
Dialysis was performed to examine some of the properties of the soluble phase of calcium (Ca) fortified soymilk at high temperatures. Dialysates were obtained while heating soymilk at temperatures of 80 and 100 °C for 1 h and 121 °C for 15 min. It was found that the pH, total Ca, and ionic Ca of dialysates obtained at high temperature were all lower than in their corresponding nonheated Ca-fortified soymilk. Increasing temperature from 80 to 100 °C hardly affected Ca ion concentration ([Ca2+]) of dialysate obtained from Ca chloride-fortified soymilk, but it increased [Ca2+] in dialysates of Ca gluconate-fortified soymilk and Ca lactate-fortified soymilk fortified with 5 to 6 mM Ca. Dialysates obtained at 100 °C had lower pH than dialysate prepared at 80 °C. Higher Ca additions to soymilk caused a significant (P≤ 0.05) reduction in pH and an increase in [Ca2+] of these dialysates. When soymilk was dialyzed at 121 °C, pH, total Ca, and ionic Ca were further reduced. Freezing point depression (FPD) of dialysates increased as temperature increased but were lower than corresponding soymilk samples. This approach provides a means of estimating pH and ionic Ca in soymilks at high temperatures, in order to better understand their combined role on soymilk coagulation.
Resumo:
Antimicrobial drug resistance is a global challenge for the 21st century with the emergence of resistant bacterial strains worldwide. Transferable resistance to beta-lactam antimicrobial drugs, mediated by production of extended-spectrum beta-lactamases (ESBLs), is of particular concern. In 2004, an ESBL-carrying IncK plasmid (pCT) was isolated from cattle in the United Kingdom. The sequence was a 93,629-bp plasmid encoding a single antimicrobial drug resistance gene, bla(CTX-M-14). From this information, PCRs identifying novel features of pCT were designed and applied to isolates from several countries, showing that the plasmid has disseminated worldwide in bacteria from humans and animals. Complete DNA sequences can be used as a platform to develop rapid epidemiologic tools to identify and trace the spread of plasmids in clinically relevant pathogens, thus facilitating a better understanding of their distribution and ability to transfer between bacteria of humans and animals.
Resumo:
Objectives: The aims of this study were to determine whether strains of Salmonella enterica serovar Typhimurium which had acquired low-level multiple antibiotic resistance (MAR) through repeated exposure to farm disinfectants were able to colonize and transmit between chicks as easily as the parent strain and, if such strains were less susceptible to fluoroquinolones, would high-level resistance be selected after fluoroquinolone treatment. Methods: Two mutants were compared with the isogenic parent. In the first experiment, day-old chicks were co-infected with both the parent and a mutant to determine their relative fitness. In the second experiment, parent and mutant strains (in separate groups of chicks) were assessed for their ability to transmit from infected (contact) to non-infected (naive) birds and with respect to their susceptibility to fluoroquinolone treatment. Birds were regularly monitored for the presence of Salmonella in caecal contents. Replica plating was used to monitor for the selection of antibiotic-resistant strains. Results: The parent strain was shown to be significantly fitter than the two mutants and was more rapidly disseminated to naive birds. Antibiotic treatment did not preferentially select for the two mutants or for resistant strains. Conclusions: The disinfectant-exposed strains, although MAR, were less fit, less able to disseminate than the parent strain and were not preferentially selected by therapeutic antibiotic treatment. As such, these strains are unlikely to present a greater problem than other salmonellae in chickens.
Resumo:
The rheology and microstructure of Mozzarella-type curds made from buffalo and cows’ milk were measured at gelation temperatures of 28, 34 and 39 °C after chymosin addition. The maximum curd strength (G′) was obtained at a gelation temperature of 34 °C in both types of bovine milk. The viscoelasticity (tan δ) of both curds was increased with increasing gelation temperature. The rennet coagulation time was reduced with increase of gelation temperature in both types of milk. Frequency sweep data (0.1–10Hz was recorded 90 min after chymosin addition, and both milk samples showed characteristics of weak viscoelastic gel systems. When both milk samples were subjected to shear stress to break the curd system at constant shear rate, 95 min after chymosin addition, the maximum yield stress was obtained at the gelation temperatures of 34 °C and 28 °C in buffalo and cows’ curd respectively. The cryo-SEM and CLSM techniques were used to observe the microstructure of Mozzarella-type curd. The porosity was measured using image J software. The cryo-SEM and CLSM micrographs showed that minimum porosity was observed at the gelation temperature of 34 °C in both types of milk. Buffalo curd showed minimum porosity at similar gelation temperature when compared to cows’ curd. This may be due to higher protein concentration in buffalo milk.
Resumo:
Rennet-induced curd was made from both natural buffalo and cows’ milk, and ultrafiltered cows’ milk (cows’ milk was concentrated such that it had a chemical composition approximately equivalent to that of the buffalo milk). These milk samples were compared on the basis of their rheology, physicochemical characteristics and curd microstructure. The ionic and soluble calcium contents were found to be similar in all milk samples studied. The total and casein bound calcium were higher in concentrated cows’ milk than in standard cows’ milk. Both cows’ milk types were found to have lower total and casein bound calcium than the buffalo milk. This is probably due to concentration of the colloidal part of milk (casein), during the ultrafiltration (UF) process. The rennet coagulation time was similar in UF cows’ and buffalo milk while both were shorter when compared with that of the cows’ milk. The dynamic moduli (G′, G″) values were higher in both the buffalo and UF cows’ milk than in the cows’ milk after 90 min coagulation. The loss tangent, however, was found to be similar in both the UF cows’ and buffalo milk curds and was lower than that observed for the cows’ milk (0.42, 0.42 and 0.48, respectively). The frequency profile of each type of curd was recorded 90 min after the enzyme addition (0.1–10 Hz); all samples were found to be “weak” viscoelastic, frequency dependent gels. The yield stress was also measured 95 min after the enzyme addition, and a higher value was observed in buffalo milk curd when compared with other curd samples made from both the natural cows’ milk and the UF cows’ milk. The cryo-scanning electron and confocal laser scanning micrographs showed that curd structure appeared to be more “dense” and less porous in buffalo milk than cows’ milk even after concentration to equivalent levels of protein/total solids to those found in the buffalo milk.
Resumo:
Snakebites are a major neglected tropical disease responsible for as many as 95000 deaths every year worldwide. Viper venom serine proteases disrupt haemostasis of prey and victims by affecting various stages of the blood coagulation system. A better understanding of their sequence, structure, function and phylogenetic relationships will improve the knowledge on the pathological conditions and aid in the development of novel therapeutics for treating snakebites. A large dataset for all available viper venom serine proteases was developed and analysed to study various features of these enzymes. Despite the large number of venom serine protease sequences available, only a small proportion of these have been functionally characterised. Although, they share some of the common features such as a C-terminal extension, GWG motif and disulphide linkages, they vary widely between each other in features such as isoelectric points, potential N-glycosylation sites and functional characteristics. Some of the serine proteases contain substitutions for one or more of the critical residues in catalytic triad or primary specificity pockets. Phylogenetic analysis clustered all the sequences in three major groups. The sequences with substitutions in catalytic triad or specificity pocket clustered together in separate groups. Our study provides the most complete information on viper venom serine proteases to date and improves the current knowledge on the sequence, structure, function and phylogenetic relationships of these enzymes. This collective analysis of venom serine proteases will help in understanding the complexity of envenomation and potential therapeutic avenues.
Resumo:
Catchments draining peat soils provide the majority of drinking water in the UK. Over the past decades, concentrations of dissolved organic carbon (DOC) have increased in surface waters. Residual DOC can cause harmful carcinogenic disinfection by-products to form during water treatment processes. Increased frequency and severity of droughts combined with and increased temperatures expected as the climate changes, have potentials to change water quality. We used a novel approach to investigate links between climate change, DOC release and subsequent effects on drinking water treatment. We designed a climate manipulation experiment to simulate projected climate changes and monitored releases from peat soil and litter, then simulated coagulation used in water treatment. We showed that the ‘drought’ simulation was the dominant factor altering DOC release and affected the ability to remove DOC. Our results imply that future short-term drought events could have a greater impact than increased temperature on DOC treatability.
Resumo:
PARs (protease-activated receptors) are a family of four G-protein-coupled receptors for proteases from the circulation, inflammatory cells and epithelial tissues. This report focuses on PAR(2), which plays an important role in inflammation and pain. Pancreatic (trypsin I and II) and extrapancreatic (trypsin IV) trypsins, mast cell tryptase and coagulation factors VIIa and Xa cleave and activate PAR(2). Proteases cleave PAR(2) to expose a tethered ligand that binds to the cleaved receptor. Despite this irreversible activation, PAR(2) signalling is attenuated by beta-arrestin-mediated desensitization and endocytosis, and by lysosomal targeting and degradation, which requires ubiquitination of PAR(2). beta-Arrestins also act as scaffolds for the assembly of multi-protein signalling complexes that determine the location and function of activated mitogen-activated protein kinases. Observations of PAR(2)-deficient mice support a role for PAR(2) in inflammation, and many of the effects of PAR(2) activators promote inflammation. Inflammation is mediated in part by activation of PAR(2) in the peripheral nervous system, which results in neurogenic inflammation and hyperalgesia.
Resumo:
Certain extracellular proteases, derived from the circulation and inflammatory cells, can specifically cleave and trigger protease-activated receptors (PARs), a small, but important, sub-group of the G-protein-coupled receptor super-family. Four PARs have been cloned and they all share the same basic mechanism of activation: proteases cleave at a specific site within the extracellular N-terminus to expose a new N-terminal tethered ligand domain, which binds to and thereby activates the cleaved receptor. Thrombin activates PAR1, PAR3 and PAR4, trypsin activates PAR2 and PAR4, and mast cell tryptase activates PAR2 in this manner. Activated PARs couple to signalling cascades that affect cell shape, secretion, integrin activation, metabolic responses, transcriptional responses and cell motility. PARs are 'single-use' receptors: proteolytic activation is irreversible and the cleaved receptors are degraded in lysosomes. Thus, PARs play important roles in 'emergency situations', such as trauma and inflammation. The availability of selective agonists and antagonists of protease inhibitors and of genetic models has generated evidence to suggests that proteases and their receptors play important roles in coagulation, inflammation, pain, healing and protection. Therefore, selective antagonists or agonists of these receptors may be useful therapeutic agents for the treatment of human diseases.