69 resultados para Digital elevation model (DEM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using topographic data collected by radar interferometry, stereo-photogrammetry, and field survey we have measured the changing surface of Volcan Arenal in Costa Rica over the period from 1980 to 2004. During this time this young volcano has mainly effused basaltic andesite lava, continuing the activity that began in 1968. Explosive products form only a few percent of the volumetric output. We have calculated digital elevation models for the years 1961, 1988 and 1997 and modified existing models for 2000 and 2004. From these we have estimated the volume of lava effused and coupled this with the data presented by an earlier study for 1968-1980. We find that a dense rock equivalent volume of 551 M m(3) was effused from 1968 to 2004. The dense rock equivalent effusion rate fell from about 2 m(3) s(-1) to about 0.1-0.2 m(3) s(-1) over the same period, with an average rate of about 0.5 m(3) s(-1). Between 1980 and 2004, the average effusion rate was 0.36 m(3) s(-1), a similar rate to that measured between 1974 and 1980. There have been two significant deviations from this long-term rate. The effusion rate increased from 1984 to 1991, at the same time as explosivity increased. After a period of moderate effusion rates in the 1990s, the rate fell to lower levels around 1999. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airborne scanning laser altimetry (LiDAR) is an important new data source for river flood modelling. LiDAR can give dense and accurate DTMs of floodplains for use as model bathymetry. Spatial resolutions of 0.5m or less are possible, with a height accuracy of 0.15m. LiDAR gives a Digital Surface Model (DSM), so vegetation removal software (e.g. TERRASCAN) must be used to obtain a DTM. An example used to illustrate the current state of the art will be the LiDAR data provided by the EA, which has been processed by their in-house software to convert the raw data to a ground DTM and separate vegetation height map. Their method distinguishes trees from buildings on the basis of object size. EA data products include the DTM with or without buildings removed, a vegetation height map, a DTM with bridges removed, etc. Most vegetation removal software ignores short vegetation less than say 1m high. We have attempted to extend vegetation height measurement to short vegetation using local height texture. Typically most of a floodplain may be covered in such vegetation. The idea is to assign friction coefficients depending on local vegetation height, so that friction is spatially varying. This obviates the need to calibrate a global floodplain friction coefficient. It’s not clear at present if the method is useful, but it’s worth testing further. The LiDAR DTM is usually determined by looking for local minima in the raw data, then interpolating between these to form a space-filling height surface. This is a low pass filtering operation, in which objects of high spatial frequency such as buildings, river embankments and walls may be incorrectly classed as vegetation. The problem is particularly acute in urban areas. A solution may be to apply pattern recognition techniques to LiDAR height data fused with other data types such as LiDAR intensity or multispectral CASI data. We are attempting to use digital map data (Mastermap structured topography data) to help to distinguish buildings from trees, and roads from areas of short vegetation. The problems involved in doing this will be discussed. A related problem of how best to merge historic river cross-section data with a LiDAR DTM will also be considered. LiDAR data may also be used to help generate a finite element mesh. In rural area we have decomposed a floodplain mesh according to taller vegetation features such as hedges and trees, so that e.g. hedge elements can be assigned higher friction coefficients than those in adjacent fields. We are attempting to extend this approach to urban area, so that the mesh is decomposed in the vicinity of buildings, roads, etc as well as trees and hedges. A dominant points algorithm is used to identify points of high curvature on a building or road, which act as initial nodes in the meshing process. A difficulty is that the resulting mesh may contain a very large number of nodes. However, the mesh generated may be useful to allow a high resolution FE model to act as a benchmark for a more practical lower resolution model. A further problem discussed will be how best to exploit data redundancy due to the high resolution of the LiDAR compared to that of a typical flood model. Problems occur if features have dimensions smaller than the model cell size e.g. for a 5m-wide embankment within a raster grid model with 15m cell size, the maximum height of the embankment locally could be assigned to each cell covering the embankment. But how could a 5m-wide ditch be represented? Again, this redundancy has been exploited to improve wetting/drying algorithms using the sub-grid-scale LiDAR heights within finite elements at the waterline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In models of complicated physical-chemical processes operator splitting is very often applied in order to achieve sufficient accuracy as well as efficiency of the numerical solution. The recently rediscovered weighted splitting schemes have the great advantage of being parallelizable on operator level, which allows us to reduce the computational time if parallel computers are used. In this paper, the computational times needed for the weighted splitting methods are studied in comparison with the sequential (S) splitting and the Marchuk-Strang (MSt) splitting and are illustrated by numerical experiments performed by use of simplified versions of the Danish Eulerian model (DEM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Earth observation (EO) products are a valuable alternative to spectral vegetation indices. We discuss the availability of EO products for analysing patterns in macroecology, particularly related to vegetation, on a range of spatial and temporal scales. Location Global. Methods We discuss four groups of EO products: land cover/cover change, vegetation structure and ecosystem productivity, fire detection, and digital elevation models. We address important practical issues arising from their use, such as assumptions underlying product generation, product accuracy and product transferability between spatial scales. We investigate the potential of EO products for analysing terrestrial ecosystems. Results Land cover, productivity and fire products are generated from long-term data using standardized algorithms to improve reliability in detecting change of land surfaces. Their global coverage renders them useful for macroecology. Their spatial resolution (e.g. GLOBCOVER vegetation, 300 m; MODIS vegetation and fire, ≥ 500 m; ASTER digital elevation, 30 m) can be a limiting factor. Canopy structure and productivity products are based on physical approaches and thus are independent of biome-specific calibrations. Active fire locations are provided in near-real time, while burnt area products show actual area burnt by fire. EO products can be assimilated into ecosystem models, and their validation information can be employed to calculate uncertainties during subsequent modelling. Main conclusions Owing to their global coverage and long-term continuity, EO end products can significantly advance the field of macroecology. EO products allow analyses of spatial biodiversity, seasonal dynamics of biomass and productivity, and consequences of disturbances on regional to global scales. Remaining drawbacks include inter-operability between products from different sensors and accuracy issues due to differences between assumptions and models underlying the generation of different EO products. Our review explains the nature of EO products and how they relate to particular ecological variables across scales to encourage their wider use in ecological applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Satellite observed data for flood events have been used to calibrate and validate flood inundation models, providing valuable information on the spatial extent of the flood. Improvements in the resolution of this satellite imagery have enabled indirect remote sensing of water levels by using an underlying LiDAR DEM to extract the water surface elevation at the flood margin. Further to comparison of the spatial extent, this now allows for direct comparison between modelled and observed water surface elevations. Using a 12.5m ERS-1 image of a flood event in 2006 on the River Dee, North Wales, UK, both of these data types are extracted and each assessed for their value in the calibration of flood inundation models. A LiDAR guided snake algorithm is used to extract an outline of the flood from the satellite image. From the extracted outline a binary grid of wet / dry cells is created at the same resolution as the model, using this the spatial extent of the modelled and observed flood can be compared using a measure of fit between the two binary patterns of flooding. Water heights are extracted using points at intervals of approximately 100m along the extracted outline, and the students T-test is used to compare modelled and observed water surface elevations. A LISFLOOD-FP model of the catchment is set up using LiDAR topographic data resampled to the 12.5m resolution of the satellite image, and calibration of the friction parameter in the model is undertaken using each of the two approaches. Comparison between the two approaches highlights the sensitivity of the spatial measure of fit to uncertainty in the observed data and the potential drawbacks of using the spatial extent when parts of the flood are contained by the topography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the MAR (Modèle Atmosphérique Régional: Fettweis, 2007) regional climate model. The motivation is to dynamically adjust SMB as the GrIS evolves, allowing us to force ice sheet models with SMB simulated by MAR while incorporating the SMB–elevation feedback, without the substantial technical challenges of coupling ice sheet and climate models. This also allows us to assess the effect of elevation feedback uncertainty on the GrIS contribution to sea level, using multiple global climate and ice sheet models, without the need for additional, expensive MAR simulations. We estimate this relationship separately below and above the equilibrium line altitude (ELA, separating negative and positive SMB) and for regions north and south of 77� N, from a set of MAR simulations in which we alter the ice sheet surface elevation. These give four “SMB lapse rates”, gradients that relate SMB changes to elevation changes. We assess uncertainties within a Bayesian framework, estimating probability distributions for each gradient from which we present best estimates and credibility intervals (CI) that bound 95% of the probability. Below the ELA our gradient estimates are mostly positive, because SMB usually increases with elevation: 0.56 (95% CI: −0.22 to 1.33) kgm−3 a−1 for the north, and 1.91 (1.03 to 2.61) kgm−3 a−1 for the south. Above the ELA, the gradients are much smaller in magnitude: 0.09 (−0.03 to 0.23) kgm−3 a−1 in the north, and 0.07 (−0.07 to 0.59) kgm−3 a−1 in the south, because SMB can either increase or decrease in response to increased elevation. Our statistically founded approach allows us to make probabilistic assessments for the effect of elevation feedback uncertainty on sea level projections (Edwards et al., 2014).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The precision farmer wants to manage the variation in soil nutrient status continuously, which requires reliable predictions at places between sampling sites. Ordinary kriging can be used for prediction if the data are spatially dependent and there is a suitable variogram model. However, even if data are spatially correlated, there are often few soil sampling sites in relation to the area to be managed. If intensive ancillary data are available and these are coregionalized with the sparse soil data, they could be used to increase the accuracy of predictions of the soil properties by methods such as cokriging, kriging with external drift and regression kriging. This paper compares the accuracy of predictions of the plant available N properties (mineral N and potentially available N) for two arable fields in Bedfordshire, United Kingdom, from ordinary kriging, cokriging, kriging with external drift and regression kriging. For the last three, intensive elevation data were used with the soil data. The mean squared errors of prediction from these methods of kriging were determined at validation sites where the values were known. Kriging with external drift resulted in the smallest mean squared error for two of the three properties examined, and cokriging for the other. The results suggest that the use of intensive ancillary data can increase the accuracy of predictions of soil properties in arable fields provided that the variables are related spatially. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines changes in the surface area of glaciers in the North and South Chuya Ridges, Altai Mountains in 1952-2004 and their links with regional climatic variations. The glacier surface areas for 2004 were derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Data from the World Glacier Inventory (WGI)dating to 1952 and aerial photographs from 1952 were used to estimate the changes. 256 glaciers with a combined area of 253±5.1 km2 have been identified in the region in 2004. Estimation of changes in extent of 126 glaciers with the individual areas not less than 0.5 km2 in 1952 revealed a 19.7±5.8% reduction. The observed glacier retreat is primarily driven by an increase in summer temperatures since the 1980s when air temperatures were increasing at a rate of 0.10 - 0.13oC a-1 at the glacier tongue elevation. The regional climate projections for A2 and B2 CO2 emission scenarios developed using PRECIS regional climate model indicate that summer temperatures will increase in the Altai in 2071-2100 by 6-7oC and 3-5oC respectively in comparison with 1961-1990 while annual precipitation will increase by 15% and 5%. The length of the ablation season will extend from June-August to the late April – early October. The projected increases in precipitation will not compensate for the projected warming and glaciers will continue to retreat in the 21st century under both B2 and A2 scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an elevation-dependent calibratory method to correct for the water vapour-induced delays over Mt. Etna that affect the interferometric syntheric aperture radar (InSAR) results. Water vapour delay fields are modelled from individual zenith delay estimates on a network of continuous GPS receivers. These are interpolated using simple kriging with varying local means over two domains, above and below 2 km in altitude. Test results with data from a meteorological station and 14 continuous GPS stations over Mt. Etna show that a reduction of the mean phase delay field of about 27% is achieved after the model is applied to a 35-day interferogram. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improvements in the resolution of satellite imagery have enabled extraction of water surface elevations at the margins of the flood. Comparison between modelled and observed water surface elevations provides a new means for calibrating and validating flood inundation models, however the uncertainty in this observed data has yet to be addressed. Here a flood inundation model is calibrated using a probabilistic treatment of the observed data. A LiDAR guided snake algorithm is used to determine an outline of a flood event in 2006 on the River Dee, North Wales, UK, using a 12.5m ERS-1 image. Points at approximately 100m intervals along this outline are selected, and the water surface elevation recorded as the LiDAR DEM elevation at each point. With a planar water surface from the gauged upstream to downstream water elevations as an approximation, the water surface elevations at points along this flooded extent are compared to their ‘expected’ value. The pattern of errors between the two show a roughly normal distribution, however when plotted against coordinates there is obvious spatial autocorrelation. The source of this spatial dependency is investigated by comparing errors to the slope gradient and aspect of the LiDAR DEM. A LISFLOOD-FP model of the flood event is set-up to investigate the effect of observed data uncertainty on the calibration of flood inundation models. Multiple simulations are run using different combinations of friction parameters, from which the optimum parameter set will be selected. For each simulation a T-test is used to quantify the fit between modelled and observed water surface elevations. The points chosen for use in this T-test are selected based on their error. The criteria for selection enables evaluation of the sensitivity of the choice of optimum parameter set to uncertainty in the observed data. This work explores the observed data in detail and highlights possible causes of error. The identification of significant error (RMSE = 0.8m) between approximate expected and actual observed elevations from the remotely sensed data emphasises the limitations of using this data in a deterministic manner within the calibration process. These limitations are addressed by developing a new probabilistic approach to using the observed data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital dermatitis is a significant problem in UK dairy herds and the cost to farmers has not yet been fully quantified. Under the current farm health planning initiative there is a need to demonstrate to farmers the costs and benefits of disease control. This paper presents the first attempt to quantify the costs and benefits of digital dermatitis control on UK dairy farms through the use of an interactive model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research examines dynamics associated with new representational technologies in complex organizations through a study of the use of a Single Model Environment, prototyping and simulation tools in the mega-project to construct Terminal 5 at Heathrow Airport, London. The ambition of the client, BAA. was to change industrial practices reducing project costs and time to delivery through new contractual arrangements and new digitally-enabled collaborative ways of working. The research highlights changes over time and addresses two areas of 'turbulence' in the use of: 1) technologies, where there is a dynamic tension between desires to constantly improve, change and update digital technologies and the need to standardise practices, maintaining and defending the overall integrity of the system; and 2) representations, where dynamics result from the responsibilities and liabilities associated with sharing of digital representations and a lack of trust in the validity of data from other firms. These dynamics are tracked across three stages of this well-managed and innovative project and indicate the generic need to treat digital infrastructure as an ongoing strategic issue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distributions of times to first cell division were determined for populations of Escherichia coli stationary-phase cells inoculated onto agar media. This was accomplished by using automated analysis of digital images of individual cells growing on agar and calculation of the "box area ratio." Using approximately 300 cells per experiment, the mean time to first division and standard deviation for cells grown in liquid medium at 37 degrees C and inoculated on agar and incubated at 20 degrees C were determined as 3.0 h and 0.7 h, respectively. Distributions were observed to tail toward the higher values, but no definitive model distribution was identified. Both preinoculation stress by heating cultures at 50 degrees C and postinoculation stress by growth in the presence of higher concentrations of NaCl increased mean times to first division. Both stresses also resulted in an increase in the spread of the distributions that was proportional to the mean division time, the coefficient of variation being constant at approximately 0.2 in all cases. The "relative division time," which is the time to first division for individual cells expressed in terms of the cell size doubling time, was used as measure of the "work to be done" to prepare for cell division. Relative division times were greater for heat-stressed cells than for those growing under osmotic stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large scientific applications are usually developed, tested and used by a group of geographically dispersed scientists. The problems associated with the remote development and data sharing could be tackled by using collaborative working environments. There are various tools and software to create collaborative working environments. Some software frameworks, currently available, use these tools and software to enable remote job submission and file transfer on top of existing grid infrastructures. However, for many large scientific applications, further efforts need to be put to prepare a framework which offers application-centric facilities. Unified Air Pollution Model (UNI-DEM), developed by Danish Environmental Research Institute, is an example of a large scientific application which is in a continuous development and experimenting process by different institutes in Europe. This paper intends to design a collaborative distributed computing environment for UNI-DEM in particular but the framework proposed may also fit to many large scientific applications as well.