71 resultados para Dendritic Morphology
Resumo:
The 3D reconstruction of a Golgi-stained dendritic tree from a serial stack of images captured with a transmitted light bright-field microscope is investigated. Modifications to the bootstrap filter are discussed such that the tree structure may be estimated recursively as a series of connected segments. The tracking performance of the bootstrap particle filter is compared against Differential Evolution, an evolutionary global optimisation method, both in terms of robustness and accuracy. It is found that the particle filtering approach is significantly more robust and accurate for the data considered.
Resumo:
Physiological evidence using Infrared Video Microscopy during the uncaging of glutamate has proven the existence of excitable calcium ion channels in spine heads, highlighting the need for reliable models of spines. In this study we compare the three main methods of simulating excitable spines: Baer & Rinzel's Continuum (B&R) model, Coombes' Spike-Diffuse-Spike (SDS) model and paired cable and ion channel equations (Cable model). Tests are done to determine how well the models approximate each other in terms of speed and heights of travelling waves. Significant quantitative differences are found between the models: travelling waves in the SDS model in particular are found to travel at much lower speeds and sometimes much higher voltages than in the Cable or B&R models. Meanwhile qualitative differences are found between the B&R and SDS models over realistic parameter ranges. The cause of these differences is investigated and potential solutions proposed.
Resumo:
A series of six low molecular weight elastomers with hydrogen bonding end-groups have been designed, synthesised and studied. The poly(urethane) based elastomers all contained essentially the same hard block content (ca. 11%) and differ only in the nature of their end-groups. Solution state 1H NMR spectroscopic analysis of model compounds featuring the end-groups demonstrate that they all exhibit very low binding constants, in the range 1.4 to 45.0 M-1 in CDCl3, yet the corresponding elastomers each possess a markedly different nanoscale morphology and rheology in the bulk. We are able to correlate small variations of the binding constant of the end-groups with dramatic changes in the bulk properties of the elastomers. These results provide an important insight into the way in which weak non-covalent interactions can be utilized to afford a range of self-assembled polyurethane based materials that feature different morphologies.
Resumo:
The M protein of coronavirus plays a central role in virus assembly, turning cellular membranes into workshops where virus and host factors come together to make new virus particles. We investigated how M structure and organization is related to virus shape and size using cryo-electron microscopy, tomography and statistical analysis. We present evidence that suggests M can adopt two conformations and that membrane curvature is regulated by one M conformer. Elongated M protein is associated with rigidity, clusters of spikes and a relatively narrow range of membrane curvature. In contrast, compact M protein is associated with flexibility and low spike density. Analysis of several types of virus-like particles and virions revealed that S protein, N protein and genomic RNA each help to regulate virion size and variation, presumably through interactions with M. These findings provide insight into how M protein functions to promote virus assembly.
Resumo:
Gene compensation by members of the myogenic regulatory factor (MRF) family has been proposed to explain the apparent normal adult phenotype of MyoD(-/-) mice. Nerve and field stimulation were used to investigate contraction properties of muscle from MyoD(-/-) mice, and molecular approaches were used to investigate satellite-cell behavior. We demonstrate that MyoD deletion results in major alterations in the organization of the neuromuscular junction, which have a dramatic influence on the physiological contractile properties of skeletal muscle. Second, we show that the lineage progression of satellite cells (especially initial proliferation) in the absence of MyoD is abnormal and linked to perturbations in the nuclear localization of beta-catenin, a key readout of canonical Wnt signaling. These results show that MyoD has unique functions in both developing and adult skeletal muscle that are not carried out by other members of the MRF family.
Resumo:
A polystyrene-block-poly(ferrocenylethylmethylsilane) diblock copolymer, displaying a double-gyroid morphology when self-assembled in the solid state, has been prepared with a PFEMS volume fraction phi(PFMS)=0.39 and a total molecular weight of 64 000 Da by sequential living anionic polymerisation. A block copolymer with a metal-containing block with iron and silicon in the main chain was selected due to its plasma etch resistance compared to the organic block. Self-assembly of the diblock copolymer in the bulk showed a stable, double-gyroid morphology as characterised by TEM. SAXS confirmed that the structure belonged to the Ia3d space group.
Resumo:
Interplanetary coronal mass ejections (ICMEs) are often observed to travel much faster than the ambient solar wind. If the relative speed between the two exceeds the fast magnetosonic velocity, then a shock wave will form. The Mach number and the shock standoff distance ahead of the ICME leading edge is measured to infer the vertical size of an ICME in a direction that is perpendicular to the solar wind flow. We analyze the shock standoff distance for 45 events varying between 0.5 AU and 5.5 AU in order to infer their physical dimensions. We find that the average ratio of the inferred vertical size to measured radial width, referred to as the aspect ratio, of an ICME is 2.8 ± 0.5. We also compare these results to the geometrical predictions from Paper I that forecast an aspect ratio between 3 and 6. The geometrical solution varies with heliocentric distance and appears to provide a theoretical maximum for the aspect ratio of ICMEs. The minimum aspect ratio appears to remain constant at 1 (i.e., a circular cross section) for all distances. These results suggest that possible distortions to the leading edge of ICMEs are frequent. But, these results may also indicate that the constants calculated in the empirical relationship correlating the different shock front need to be modified; or perhaps both distortions and a change in the empirical formulae are required.
Resumo:
This study tested the hypothesis that a set of predominantly myeloid restricted receptors (F4/80, CD36, Dectin-1, CD200 receptor and mannan binding lectins) and the broadly expressed CD200 played a role in a key function of plasmacytoid DC (pDC), virally induced type I interferon (IFN) production. The Dectin-1 ligands zymosan, glucan phosphate and the anti-Dectin-1 monoclonal antibody (mAb) 2A11 had no effect on influenza virus induced IFNα/β production by murine splenic pDC. However, mannan, a broad blocking reagent against mannose specific receptors, inhibited IFNα/β production by pDC in response to inactivated influenza virus. Moreover, viral glycoproteins (influenza virus haemagglutinin and HIV-1 gp120) stimulated IFNα/β production by splenocytes in a mannan-inhibitable manner, implicating the function of a lectin in glycoprotein induced IFN production. Lastly, the effect of CD200 on IFN induction was investigated. CD200 knock-out macrophages produced more IFNα than wild-type macrophages in response to polyI:C, a MyD88-independent stimulus, consistent with CD200's known inhibitory effect on myeloid cells. In contrast, blocking CD200 with an anti-CD200 mAb resulted in reduced IFNα production by pDC-containing splenocytes in response to CpG and influenza virus (MyD88-dependent stimuli). This suggests there could be a differential effect of CD200 on MyD88 dependent and independent IFN induction pathways in pDC and macrophages. This study supports the hypothesis that a mannan-inhibitable lectin and CD200 are involved in virally induced type I IFN induction.
Resumo:
The present study investigates the effects of child internal (age/time) and child external/environmental factors on the development of a wide range of language domains in successive bilingual (L2) Turkish-English children of homogeneously low SES. Forty-three L2 children were tested on standardized assessments examining the acquisition of vocabulary and morpho-syntax. The L2 children exhibited a differential acquisition of the various domains: they were better on the general comprehension of grammar and tense morphology and less accurate on the acquisition of vocabulary and (complex) morpho-syntax. Profile effects were confirmed by the differential effects of internal and external factors on the language domains. The development of vocabulary and complex syntax were affected by internal and external factors, whereas external factors had no contribution to the development of tense morphology. These results are discussed in light of previous studies on the impact of internal and external factors in child L2 acquisition.
Resumo:
This study investigates the production and on-line processing of English tense morphemes by sequential bilingual (L2) Turkish-speaking children with more than three years of exposure to English. Thirty nine 6-9-year-old L2 children and 28 typically developing age-matched monolingual (L1) children were administered the production component for third person –s and past tense of the Test for Early Grammatical Impairment (Rice & Wexler, 1996) and participated in an on-line word-monitoring task involving grammatical and ungrammatical sentences with presence/omission of tense (third person –s, past tense -ed) and non-tense (progressive –ing, possessive ‘s) morphemes. The L2 children’s performance on the on-line task was compared to that of children with Specific Language Impairment (SLI) in Montgomery & Leonard (1998, 2006) to ascertain similarities and differences between the two populations. Results showed that the L2 children were sensitive to the ungrammaticality induced by the omission of tense morphemes, despite variable production. This reinforces the claim about intact underlying syntactic representations in child L2 acquisition despite non target-like production (Haznedar & Schwartz, 1997).
Resumo:
Dual-system models suggest that English past tense morphology involves two processing routes: rule application for regular verbs and memory retrieval for irregular verbs (Pinker, 1999). In second language (L2) processing research, Ullman (2001a) suggested that both verb types are retrieved from memory, but more recently Clahsen and Felser (2006) and Ullman (2004) argued that past tense rule application can be automatised with experience by L2 learners. To address this controversy, we tested highly proficient Greek-English learners with naturalistic or classroom L2 exposure compared to native English speakers in a self-paced reading task involving past tense forms embedded in plausible sentences. Our results suggest that, irrespective to the type of exposure, proficient L2 learners of extended L2 exposure apply rule-based processing.