37 resultados para Delay discounting
Resumo:
Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share cognitive abnormalities in temporal foresight. A key question is whether shared cognitive phenotypes are based on common or different underlying pathophysiologies and whether comorbid patients have additive neurofunctional deficits, resemble one of the disorders or have a different pathophysiology. We compared age- and IQ-matched boys with non-comorbid ADHD (18), non-comorbid ASD (15), comorbid ADHD and ASD (13) and healthy controls (18) using functional magnetic resonance imaging (fMRI) during a temporal discounting task. Only the ASD and the comorbid groups discounted delayed rewards more steeply. The fMRI data showed both shared and disorder-specific abnormalities in the three groups relative to controls in their brain-behaviour associations. The comorbid group showed both unique and more severe brain-discounting associations than controls and the non-comorbid patient groups in temporal discounting areas of ventromedial and lateral prefrontal cortex, ventral striatum and anterior cingulate, suggesting that comorbidity is neither an endophenocopy of the two pure disorders nor an additive pathology.
Resumo:
Aim To develop a brief, parent-completed instrument (‘ERIC’) for detection of cognitive delay in 10-24 month-olds born preterm, or with low birth weight, or with perinatal complications, and to establish its diagnostic properties. Method Scores were collected from parents of 317 children meeting ≥1 inclusion criteria (birth weight <1500g; gestational age <34 completed weeks; 5-minute Apgar <7; presence of hypoxic-ischemic encephalopathy) and meeting no exclusion criteria. Children were assessed for cognitive delay using a criterion score on the Bayley Scales of Infant and Toddler Development Cognitive Scale III1 <80. Items were retained according to their individual associations with delay. Sensitivity, specificity, Positive and Negative Predictive Values were estimated and a truncated ERIC was developed for use <14 months. Results ERIC detected 17 out of 18 delayed children in the sample, with 94.4% sensitivity (95% CI [confidence interval] 83.9-100%), 76.9% specificity (72.1-81.7%), 19.8% positive predictive value (11.4-28.2%); 99.6% negative predictive value (98.7-100%); 4.09 likelihood ratio positive; and 0.07 likelihood ratio negative; the associated Area under the Curve was .909 (.829-.960). Interpretation ERIC has potential value as a quickly-administered diagnostic instrument for the absence of early cognitive delay in preterm or premature infants of 10-24 months, and as a screen for cognitive delay. Further research may be needed before ERIC can be recommended for wide-scale use.
Resumo:
In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. Such a timing mismatch may cause rank deficiency of the conventional space-time codes and, thus, performance degradation. One efficient way to overcome such an issue is the delay-tolerant space-time codes (DT-STCs). The existing DT-STCs are designed assuming that the transmitter has no knowledge about the channels. In this paper, we show how the performance of DT-STCs can be improved by utilizing some feedback information. A general framework for designing DT-STC with limited feedback is first proposed, allowing for flexible system parameters such as the number of transmit/receive antennas, modulated symbols, and the length of codewords. Then, a new design method is proposed by combining Lloyd's algorithm and the stochastic gradient-descent algorithm to obtain optimal codebook of STCs, particularly for systems with linear minimum-mean-square-error receiver. Finally, simulation results confirm the performance of the newly designed DT-STCs with limited feedback.
Resumo:
This letter presents an accurate delay analysis in prioritised wireless sensor networks (WSN). The analysis is an enhancement of the existing analysis proposed by Choobkar and Dilmaghani, which is only applicable to the case where the lower priority nodes always have packets to send in the empty slots of the higher priority node. The proposed analysis is applicable for any pattern of packet arrival, which includes the general case where the lower priority nodes may or may not have packets to send in the empty slots of the higher priority nodes. Evaluation of both analyses showed that the proposed delay analysis has better accuracy over the full range of loads and provides an excellent match to simulation results.
Resumo:
One route to understanding the thoughts and feelings of others is by mentally putting one's self in their shoes and seeing the world from their perspective, i.e., by simulation. Simulation is potentially used not only for inferring how others feel, but also for predicting how we ourselves will feel in the future. For instance, one might judge the worth of a future reward by simulating how much it will eventually be enjoyed. In intertemporal choices between smaller immediate and larger delayed rewards, it is observed that as the length of delay increases, delayed rewards lose subjective value; a phenomenon known as temporal discounting. In this article, we develop a theoretical framework for the proposition that simulation mechanisms involved in empathizing with others also underlie intertemporal choices. This framework yields a testable psychological account of temporal discounting based on simulation. Such an account, if experimentally validated, could have important implications for how simulation mechanisms are investigated, and makes predictions about special populations characterized by putative deficits in simulating others.
Resumo:
In humans, both language and fine motor skills are associated with left-hemisphere specialization, whereas visuospatial skills are associated with right-hemisphere specialization. Individuals with autism spectrum conditions (ASC) show a profile of deficits and strengths that involves these lateralized cognitive functions. Here we test the hypothesis that regions implicated in these functions are atypically rightward lateralized in individuals with ASC and, that such atypicality is associated with functional performance. Participants included 67 male, right-handed adults with ASC and 69 age- and IQ-matched neurotypical males. We assessed group differences in structural asymmetries in cortical regions of interest with voxel-based analysis of grey matter volumes, followed by correlational analyses with measures of language, motor and visuospatial skills. We found stronger rightward lateralization within the inferior parietal lobule and reduced leftward lateralization extending along the auditory cortex comprising the planum temporale, Heschl's gyrus, posterior supramarginal gyrus, and parietal operculum, which was more pronounced in ASC individuals with delayed language onset compared to those without. Planned correlational analyses showed that for individuals with ASC, reduced leftward asymmetry in the auditory region was associated with more childhood social reciprocity difficulties. We conclude that atypical cerebral structural asymmetry is a potential candidate neurophenotype of ASC
Resumo:
Background Serotonin is under-researched in attention deficit hyperactivity disorder (ADHD), despite accumulating evidence for its involvement in impulsiveness and the disorder. Serotonin further modulates temporal discounting (TD), which is typically abnormal in ADHD relative to healthy subjects, underpinned by reduced fronto-striato-limbic activation. This study tested whether a single acute dose of the selective serotonin reuptake inhibitor (SSRI) fluoxetine up-regulates and normalizes reduced fronto-striato-limbic neurofunctional activation in ADHD during TD. Method Twelve boys with ADHD were scanned twice in a placebo-controlled randomized design under either fluoxetine (between 8 and 15 mg, titrated to weight) or placebo while performing an individually adjusted functional magnetic resonance imaging TD task. Twenty healthy controls were scanned once. Brain activation was compared in patients under either drug condition and compared to controls to test for normalization effects. Results Repeated-measures whole-brain analysis in patients revealed significant up-regulation with fluoxetine in a large cluster comprising right inferior frontal cortex, insula, premotor cortex and basal ganglia, which further correlated trend-wise with TD performance, which was impaired relative to controls under placebo, but normalized under fluoxetine. Fluoxetine further down-regulated default mode areas of posterior cingulate and precuneus. Comparisons between controls and patients under either drug condition revealed normalization with fluoxetine in right premotor-insular-parietal activation, which was reduced in patients under placebo. Conclusions The findings show that a serotonin agonist up-regulates activation in typical ADHD dysfunctional areas in right inferior frontal cortex, insula and striatum as well as down-regulating default mode network regions in the context of impulsivity and TD.