39 resultados para Debugging in computer science.
Resumo:
Some 50,000 Win Studies in Chess challenge White to find an effectively unique route to a win. Judging the impact of less than absolute uniqueness requires both technical analysis and artistic judgment. Here, for the first time, an algorithm is defined to help analyse uniqueness in endgame positions objectively. The key idea is to examine how critical certain positions are to White in achieving the win. The algorithm uses sub-n-man endgame tables (EGTs) for both Chess and relevant, adjacent variants of Chess. It challenges authors of EGT generators to generalise them to create EGTs for these chess variants. It has already proved efficient and effective in an implementation for Starchess, itself a variant of chess. The approach also addresses a number of similar questions arising in endgame theory, games and compositions.
Resumo:
This paper proposes a solution to the problems associated with network latency within distributed virtual environments. It begins by discussing the advantages and disadvantages of synchronous and asynchronous distributed models, in the areas of user and object representation and user-to-user interaction. By introducing a hybrid solution, which utilises the concept of a causal surface, the advantages of both synchronous and asynchronous models are combined. Object distortion is a characteristic feature of the hybrid system, and this is proposed as a solution which facilitates dynamic real-time user collaboration. The final section covers implementation details, with reference to a prototype system available from the Internet.
Resumo:
The Twitter network has been labelled the most commonly used microblogging application around today. With about 500 million estimated registered users as of June, 2012, Twitter has become a credible medium of sentiment/opinion expression. It is also a notable medium for information dissemination; including breaking news on diverse issues since it was launched in 2007. Many organisations, individuals and even government bodies follow activities on the network in order to obtain knowledge on how their audience reacts to tweets that affect them. We can use postings on Twitter (known as tweets) to analyse patterns associated with events by detecting the dynamics of the tweets. A common way of labelling a tweet is by including a number of hashtags that describe its contents. Association Rule Mining can find the likelihood of co-occurrence of hashtags. In this paper, we propose the use of temporal Association Rule Mining to detect rule dynamics, and consequently dynamics of tweets. We coined our methodology Transaction-based Rule Change Mining (TRCM). A number of patterns are identifiable in these rule dynamics including, new rules, emerging rules, unexpected rules and ?dead' rules. Also the linkage between the different types of rule dynamics is investigated experimentally in this paper.
Resumo:
SOA (Service Oriented Architecture), workflow, the Semantic Web, and Grid computing are key enabling information technologies in the development of increasingly sophisticated e-Science infrastructures and application platforms. While the emergence of Cloud computing as a new computing paradigm has provided new directions and opportunities for e-Science infrastructure development, it also presents some challenges. Scientific research is increasingly finding that it is difficult to handle “big data” using traditional data processing techniques. Such challenges demonstrate the need for a comprehensive analysis on using the above mentioned informatics techniques to develop appropriate e-Science infrastructure and platforms in the context of Cloud computing. This survey paper describes recent research advances in applying informatics techniques to facilitate scientific research particularly from the Cloud computing perspective. Our particular contributions include identifying associated research challenges and opportunities, presenting lessons learned, and describing our future vision for applying Cloud computing to e-Science. We believe our research findings can help indicate the future trend of e-Science, and can inform funding and research directions in how to more appropriately employ computing technologies in scientific research. We point out the open research issues hoping to spark new development and innovation in the e-Science field.
Resumo:
Nonlinear data assimilation is high on the agenda in all fields of the geosciences as with ever increasing model resolution and inclusion of more physical (biological etc.) processes, and more complex observation operators the data-assimilation problem becomes more and more nonlinear. The suitability of particle filters to solve the nonlinear data assimilation problem in high-dimensional geophysical problems will be discussed. Several existing and new schemes will be presented and it is shown that at least one of them, the Equivalent-Weights Particle Filter, does indeed beat the curse of dimensionality and provides a way forward to solve the problem of nonlinear data assimilation in high-dimensional systems.
Resumo:
This article explores the way users of an online gay chat room negotiate the exchange of photographs and the conduct of video conferencing sessions and how this negotiation changes the way participants manage their interactions and claim and impute social identities. Different modes of communication provide users with different resources for the control of information, affecting not just what users are able to reveal, but also what they are able to conceal. Thus, the shift from a purely textual mode for interacting to one involving visual images fundamentally changes the kinds of identities and relationships available to users. At the same time, the strategies users employ to negotiate these shifts of mode can alter the resources available in different modes. The kinds of social actions made possible through different modes, it is argued, are not just a matter of the modes themselves but also of how modes are introduced into the ongoing flow of interaction.