35 resultados para Death by drowning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac myocyte death, whether through necrotic or apoptotic mechanisms, is a contributing factor to many cardiac pathologies. Although necrosis and apoptosis are the widely accepted forms of cell death, they may utilize the same cell death machinery. The environment within the cell probably dictates the final outcome, producing a spectrum of response between the two extremes. This review examines the probable mechanisms involved in myocyte death. Caspases, the generally accepted executioners of apoptosis, are significant in executing cardiac myocyte death, but other proteases (e.g., calpains, cathepsins) also promote cell death, and these are discussed. The two principal cell death pathways (death receptor- and mitochondrial-mediated) are described in relation to the emerging structural information for the principal proteins, and they are discussed relative to current understanding of myocyte cell death mechanisms. Whereas the mitochondrial pathway is probably a significant factor in myocyte death in both acute and chronic phases of myocardial diseases, the death receptor pathway may prove significant in the longer term. The Bcl-2 family of proteins are key regulators of the mitochondrial death pathway. These proteins are described and their possible functions are discussed. The commitment to cell death is also influenced by protein kinase cascades that are activated in the cell. Whereas certain pathways are cytoprotective (e.g., phosphatidylinositol 3'-kinase), the roles of other kinases are less clear. Since myocyte death is implicated in a number of cardiac pathologies, attenuation of the death pathways may prove important in ameliorating such disease states, and possible therapeutic strategies are explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress promotes cardiac myocyte apoptosis through the mitochondrial death pathway. Since Bcl-2 family proteins are key regulators of apoptosis, we examined the effects of H2O2 on the expression of principal Bcl-2 family proteins (Bcl-2, Bcl-xL, Bax, Bad) in neonatal rat cardiac myocytes. Protein expression was assessed by immunoblotting. Bcl-2, Bax, and Bad were all down-regulated in myocytes exposed to 0.2 mm H2O2, a concentration that induces apoptosis. In contrast, although Bcl-xL levels initially declined, the protein was re-expressed from 4-6 h. Bcl-xL mRNA was up-regulated from 2 to 4 h in neonatal rat or mouse cardiac myocytes exposed to H2O2, consistent with the re-expression of protein. Four different untranslated first exons have been identified for the Bcl-x gene (exons 1, 1B, 1C, and 1D, where exon 1 is the most proximal and exon 1D the most distal to the coding region). All were detected in mouse or rat neonatal cardiac myocytes, but exon 1D was not expressed in adult mouse hearts. In neonatal mouse or rat cardiac myocytes, H2O2 induced the expression of exons 1B, 1C, and 1D, but not exon 1. These data demonstrate that the Bcl-x gene is selectively responsive to oxidative stress, and the response is mediated through distal promoter regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although many studies have explored the stimuli which promote hypertrophic growth or death in cardiac myocytes and the signaling pathways which they activate, the mechanisms by which these pathways promote the pathophysiological responses are still obscure. The mitogen-activated protein kinase (MAPK) cascades (in which MAPKs are phosphorylated and activated by upstream MAPK kinases [MKKs] which are, in turn, phosphorylated and activated by MKK kinases [MKKKs]) were identified in the early- to mid-1990s as potentially key regulatory pathways in cardiac myocyte pathophysiology.1,2 The principal MAPKs investigated in cardiac myocytes are the extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38-MAPKs. ERK1/2 are potently activated by hypertrophic stimuli, whereas JNKs and p38-MAPKs are potently activated by cellular stresses (eg, oxidative stress). However, there is cross-talk such that JNKs and p38-MAPKs are activated by hypertrophic stimuli and ERK1/2 are activated by cellular stresses, and the contribution of each pathway to the overall cardiac myocyte response is not entirely clear. MAPKs phosphorylate a number of known transcription factors to alter their transactivating activities thus, presumably, influencing gene expression to elicit the cellular response.3 Nevertheless, the immediate consequences (ie, the transcription factors which are phosphorylated) and downstream consequences (ie, genes with altered expression) of MAPK signaling in the heart or specifically in cardiac myocytes are still largely unknown. To start to address this issue for the p38-MAPK pathway in the (rat) heart (Figure), Tenhunen et al4 directly injected adenoviruses encoding wild-type (WT) p38-MAPKα together …

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson's disease is characterized by the progressive and selective loss of dopaminergic neurons in the substantia nigra. It has been postulated that endogenously formed CysDA (5-S-cysteinyldopamine) and its metabolites may be, in part, responsible for this selective neuronal loss, although the mechanisms by which they contribute to such neurotoxicity are not understood. Exposure of neurons in culture to CysDA caused cell injury, apparent 12-48 h post-exposure. A portion of the neuronal death induced by CysDA was preceded by a rapid uptake and intracellular oxidation of CysDA, leading to an acute and transient activation of ERK2 (extracellular-signal-regulated kinase 2) and caspase 8. The oxidation of CysDA also induced the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser967, the phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun (Ser73) as well as the activation of p38, caspase 3, caspase 8, caspase 7 and caspase 9. Concurrently, the inhibition of complex I by the dihydrobenzothiazine DHBT-1 [7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid], formed from the intracellular oxidation of CysDA, induces complex I inhibition and the subsequent release of cytochrome c which further potentiates pro-apoptotic mechanisms. Our data suggest a novel comprehensive mechanism for CysDA that may hold relevance for the selective neuronal loss observed in Parkinson's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chapter is an investigation of the child’s emotional response to death in early modern England. While much valuable scholarship has been produced on parents’ responses to the deaths of children, the reactions of the young themselves have rarely been explored. Drawing on a range of printed and archival sources, I argue that children expressed diverse and conflicting emotions, from fear and anxiety, to excitement and ecstasy. By exploring the emotional experiences of Protestants, the chapter contributes to the bourgeoning literature on emotion and religion, and contests earlier depictions of reformed Protestantism as an inherently intellectual, rather than an affective, faith. This study also suggests that we revise the way we classify the emotions, resisting the intuitive urge to categorise them as ‘positive’ or ‘negative’. The fear of hell, for example, though profoundly unpleasant, was regarded as a rational, commendable response, which demonstrated the work of the Holy Spirit in the soul, and was a prerequisite for the attainment of a joyful assurance of heaven. An underlying question is to what extent children’s responses to death differed from those of adults. I propose that although their reactions were broadly similar, the precise preoccupations of dying children were different. Through highlighting these distinctive features, we can come to a closer idea of what it was like to be a child in the early modern period.