79 resultados para Damage to plants
Resumo:
The fungus Gaeumannomyces graminis var. tritici (Ggt), commonly known as the take-all fungus, causes damage to roots of wheat and barley that limits crop growth and causes loss of yield. There was little knowledge on the within-field spatial variation of take-all and relations with features in the growing crop, selected soil properties and spectral information from remotely sensed imagery. Geostatistical analyses showed that take-all, chlorosis and leaf area index had similar patchy distributions. Many of the spectral bands from a hyperspectral image also had similar spatial patterns to take-all and chlorosis. Relations between take-all and mineral nitrogen, elevation and pH were generally weaker.
Resumo:
Sorghum (Sorghum bicolor L.) plants were grown in split pots in three Rothamsted soils with different soil pH values and phosphorus (P) contents. Ammonium addition resulted in higher plant dry weight and P content than comparable nitrate treatments. The pH of soils in the rhizosphere (0.51-mm average thickness) differed from the bulk soil depending on nitrogen (N) form and level. Ammonium application resulted in a pH decrease, but nitrate application slightly increased pH. To examine the effect of rhizosphere acidification on mobilization of phosphate, 0.5 M NaHCO3 extractable phosphate was measured. The lowering rhizosphere pH enhanced the solubility of P in the soil and maybe availability of P to plants. Rhizosphere-P depletion increased with increasing ammonium supply, but when N was supplied as nitrate, P depletion was not related to increasing nitrate supply. Low P status Hoosfield soils developed mycorrhizal infection., and as a result, P inflow was increased. Geescroft soil, which initially had a high P status, did not develop mycorrhizal infection, and P inflow was much smaller and was unaffected by N treatments. Therefore, plant growth and P uptake were influenced by both rhizosphere pH and indigenous mycorrhizal infection.
Resumo:
White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community composition. 2 For two grassland systems, one on a sandy soil in the Netherlands and one on a chalk soil in the United Kingdom, we investigated how individual plant species grown in monocultures changed abiotic and biotic soil conditions. Then, we determined feedback effects of these soils to plants of the same or different species. Feedback effects were analysed at the level of plant species and plant taxonomic groups (grasses vs. forbs). 3 In the sandy soils, plant species differed in their effects on soil chemical properties, in particular potassium levels, but PLFA (phospholipid fatty acid) signatures of the soil microbial community did not differ between plant species. The effects of soil chemical properties were even greater when grasses and forbs were compared, especially because potassium levels were lower in grass monocultures. 4 In the chalk soil, there were no effects of plant species on soil chemical properties, but PLFA profiles differed significantly between soils from different monocultures. PLFA profiles differed between species, rather than between grasses and forbs. 5 In the feedback experiment, all plant species in sandy soils grew less vigorously in soils conditioned by grasses than in soils conditioned by forbs. These effects correlated significantly with soil chemical properties. None of the seven plant species showed significant differences between performance in soil conditioned by the same vs. other plant species. 6 In the chalk soil, Sanguisorba minor and in particular Briza media performed best in soil collected from conspecifics, while Bromus erectus performed best in soil from heterospecifics. There was no distinctive pattern between soils collected from forb and grass monocultures, and plant performance could not be related to soil chemical properties or PLFA signatures. 7 Our study shows that mechanisms of plant-soil feedback can depend on plant species, plant taxonomic (or functional) groups and site-specific differences in abiotic and biotic soil properties. Understanding how plant species can influence their rhizosphere, and how other plant species respond to these changes, will greatly enhance our understanding of the functioning and stability of ecosystems.
Resumo:
The suitability of cryopreservation for the secure, long-term storage of the rare and endangered species Cosmos atrosanguineus was investigated. Using encapsulation/dehydration of shoot tips in alginate strips, survival rates of up to 100 % and shoot regeneration of up to 35 % were achieved. Light and electron microscopy studies indicated that cellular damage to some regions of the shoot tip during the freeze/thaw procedure was high, although cell survival in and around the meristematic region allowed shoot tip regeneration. The genetic fingerprinting technique, amplified fragment length polymorphisms (AFLPs), showed that no detectable genetic variation was present between material of C. atrosanguineus at the time of initiation into tissue culture and that which had been cryopreserved, stored in liquid nitrogen for 12 months and regenerated. Wearied plantlets that were grown under glasshouse conditions exhibited no morphological variation from non-frozen controls. (C) 2003 Annals of Botany Company.
Resumo:
Cryopreservation using encapsulation-dehydration was developed for the long-term conservation of cocoa (Theobroma cacao L.) germplasm. Survival of individually encapsulated somatic embryos after desiccation and cryopreservation was achieved through optimization of cryoprotectants (abscisic acid (ABA) and sugar), duration of osmotic and evaporative dehydration, and embryo development stage. Up to 63% of the genotype SPA4 early-cotyledonary somatic embryos survived cryopreservation following 7 days preculture with 1 M sucrose and 4 h silica exposure (16% moisture content in bead). This optimized protocol was successfully applied to three other genotypes, e.g. EET272, IMC14 and AMAZ12, with recovery frequencies of 25, 40 and 72%, respectively (but the latter two genotypes using 0.75 M sucrose). Recovered SPA4 somatic embryos converted to plants at a rate of 33% and the regenerated plants were phenotypically comparable to non-cryopreserved somatic embryo-derived plants.
Resumo:
Physical, cultural and biological methods for weed control have developed largely independently and are often concerned with weed control in different systems: physical and cultural control in annual crops and biocontrol in extensive grasslands. We discuss the strengths and limitations of four physical and cultural methods for weed control: mechanical, thermal, cutting, and intercropping, and the advantages and disadvantages of combining biological control with them. These physical and cultural control methods may increase soil nitrogen levels and alter microclimate at soil level; this may be of benefit to biocontrol agents, although physical disturbance to the soil and plant damage may be detrimental. Some weeds escape control by these methods; we suggest that these weeds may be controlled by biocontrol agents. It will be easiest to combine biological control with. re and cutting in grasslands; within arable systems it would be most promising to combine biological control (especially using seed predators and foliar pathogens) with cover-cropping, and mechanical weeding combined with foliar bacterial and possibly foliar fungal pathogens. We stress the need to consider the timing of application of combined control methods in order to cause least damage to the biocontrol agent, along with maximum damage to the weed and to consider the wider implications of these different weed control methods.
Resumo:
The suitability of cryopreservation for the secure, long-term storage of the rare and endangered species Cosmos atrosanguineus was investigated. Using encapsulation/dehydration of shoot tips in alginate strips, survival rates of up to 100 % and shoot regeneration of up to 35 % were achieved. Light and electron microscopy studies indicated that cellular damage to some regions of the shoot tip during the freeze/thaw procedure was high, although cell survival in and around the meristematic region allowed shoot tip regeneration. The genetic fingerprinting technique, amplified fragment length polymorphisms (AFLPs), showed that no detectable genetic variation was present between material of C. atrosanguineus at the time of initiation into tissue culture and that which had been cryopreserved, stored in liquid nitrogen for 12 months and regenerated. Weaned plantlets that were grown under glasshouse conditions exhibited no morphological variation from non-frozen controls.
Resumo:
Film greenhouse claddings are typically used to protect horticultural crops from low temperature and high rainfall conditions. However, a range of novel plastic films have been developed which filter specific radiation wavelengths with the aim of providing the grower with greater control of crop growth and development. A replicated experiment was conducted in 8 small experimental greenhouses, covered with different photoselective films characterised by a range of red/far-red ratios and PAR transmissions to study their effects on the growth, yield and quality of the strawberry cv. 'Elsanta'. Marketable yield per plant was 51% greater under the film with the highest light transmission (control) compared with the lower light transmission films. Similarly, unmarketable fruit number and average non-marketable individual fruit weight per plant was lowest under films with higher light transmissions and higher under lower light transmission films. Cropping duration was longer under films with high R/FR. Also plants under high R/FR were more compact (due to shorter petiole lengths) compared to plants grown under low R/FR. The results are discussed in relation to the increased use of photoselective films in protected horticulture and the need for higher quality fruit and vegetables.
Resumo:
Theoretical calculations have been carried out on the interactions of several endoperoxides which are potential antimalarials, including the clinically useful artemisinin, with two possible sources of iron in the parasite, namely the hexa-aquo ferrous ion [Fe(H2O)(6)](2+) and haeme. DFT calculations show that the reactions of all endoperoxides considered, with both sources of iron, initially generate a Fe-O bond followed by cleavage of the O-O bond to oxygen radical species. Subsequently, they can be transformed into carbon-centred radicals of greater stability. However, with [Fe(H2O)(6)](2+) as the iron source, the oxygen-centred radical species are more likely to react further akin to Fenton's reagent, whereby iron salts encourage hydrogen peroxide to act as an oxidizing agent, and that solvent plays a major role. In contrast, when reacting with haeme, the oxygen-centred radicals interconvert to more stable carbon-centred radicals, which can then alkylate haeme. Subsequent cleavage of the Fe-O bond leads to stable and inactive antimalarial products. These results indicate that the reactivity of the endoperoxides as antimalarials is greater with iron hexahydrates for radical-mediated damage as opposed to haeme, which leads to unreactive species. Since only nanomolar quantities of hydrated metal ions could catalyse the reactions leading to damage to the parasites, this could be an alternative or competitive reaction responsible for the antimalarial activity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The "two-faced" character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular. ROS activation of AP-1 (activator protein) and NF-kappa B (nuclear factor kappa B) signal transduction pathways, which, in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu. Zn-SOD. Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of careinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-kappa B, AP-1 are also reviewed. 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Thin slices of soft flexible solids have negligible bending resistance and hence store negligible elastic strain energy; furthermore such offcuts are rarely permanently deformed after slicing. Cutting forces thus depend only on work of separation (toughness work) and friction. These simplifying assumptions are not as restrictive as it might seem, and the mechanics are found to apply to a wide variety of foodstuffs and biological materials. The fracture toughness of such materials may be determined from cutting experiments: the use of scissors instrumented for load and displacement is a popular method where toughness is obtained from the work areas beneath load–displacement plots. Surprisingly, there is no analysis for the variation of forces with scissor blade opening and this paper provides the theory. Comparison is made with experimental results in cutting with scissors. The analysis is generalised to cutting with blades of variable curvature and applied to a commercial food cutting device having a rotating spiral plan form blade. The strong influence of the ‘slice/push ratio’ (blade tangential speed to blade edge normal speed) on the cutting forces is revealed. Small cutting forces are important in food cutting machinery as damage to slices is minimised. How high slice/push ratios may be achieved by choice of blade profile is discussed.
Resumo:
The tensile strength of 576 pieces of white line horn collected over 6 mo from 14 dairy cows restricted to parity 1 or 2 was tested. None of the cows had ever been lame. Seven cows were randomly assigned to receive 20 mg/d biotin supplementation, and 7 were not supplemented. Hoof horn samples were taken from zones 2 and 3 (the more proximal and distal sites of the abaxial white line) of the medial and lateral claws of both hind feet on d 1 and on 5 further occasions over 6 mo. The samples were analyzed at 100% water saturation. Hoof slivers were notched to ensure that tensile strength was measured specifically across the white line region. The tensile stress at failure was measured in MPa and was adjusted for the cross-sectional area of the notch site. Data were analyzed in a multilevel model, which accounted for the repeated measures within cows. All other variables were entered as fixed effects. In the final model, there was considerable variation in strength over time. Tensile strength was significantly higher in medial compared with lateral claws, and zone 2 was significantly stronger than zone 3. Where the white line was visibly damaged the tensile strength was low. Biotin supplementation did not affect the tensile strength of the white line. Results of this study indicate that damage to the white line impairs its tensile strength and that in horn with no visible abnormality the white line is weaker in the lateral hind claw than the medial and in zone 3 compared with zone 2. The biomechanical strength was lowest at zone 3 of the lateral hind claw, which is the most common site of white line disease lameness in cattle.
Resumo:
The relationship between a loss of viability and several morphological and physiological changes was examined with Escherichia coli strain J1 subjected to high-pressure treatment. The pressure resistance of stationary-phase cells was much higher than that of exponential-phase cells, but in both types of cell, aggregation of cytoplasmic proteins and condensation of the nucleoid occurred after treatment at 200 MPa for 8 min. Although gross changes were detected in these cellular structures, they were not related to cell death, at least for stationary-phase cells. In addition to these events, exponential-phase cells showed changes in their cell envelopes that were not seen for stationary-phase cells, namely physical perturbations of the cell envelope structure, a loss of osmotic responsiveness, and a loss of protein and RNA to the extracellular medium. Based on these observations, we propose that exponential-phase cells are inactivated under high pressure by irreversible damage to the cell membrane. In contrast, stationary-phase cells have a cytoplasmic membrane that is robust enough to withstand pressurization up to very intense treatments. The retention of an intact membrane appears to allow the stationary-phase cell to repair gross changes in other cellular structures and to remain viable at pressures that are lethal to exponential-phase cells.
Resumo:
Ribosome modulation factor (RMF) was shown to have an influence on the survival of Escherichia coli under acid stress during stationary phase, since the viability of cultures of a mutant strain lacking functional RMF decreased more rapidly than that of the parent strain at pH 3. Loss of ribosomes was observed in both strains when exposed to low pH, although this occurred at a higher rate in the RMF-deficient mutant strain, which also suffered from higher levels of rRNA degradation. It was concluded that the action of RMF in limiting the damage to rRNA contributed to the protection of E coli under acid stress. Expression of the rmf gene was lower during stationary phase after growth in acidified media compared to media containing no added acid, and the increased rmf expression associated with transition from exponential phase to stationary phase was much reduced in acidified media. It was demonstrated that RMF was not involved in the stationary-phase acid-tolerance response in E coli by which growth under acidic conditions confers protection against subsequent acid shock. This response was sufficient to overcome the increased vulnerability of the RMF-deficient mutant strain to acid stress at pH values between 6.5 and 5.5.