68 resultados para DNA Sequence, Hidden Markov Model, Bayesian Model, Sensitive Analysis, Markov Chain Monte Carlo
Resumo:
We have developed a model of the local field potential (LFP) based on the conservation of charge, the independence principle of ionic flows and the classical Hodgkin–Huxley (HH) type intracellular model of synaptic activity. Insights were gained through the simulation of the HH intracellular model on the nonlinear relationship between the balance of synaptic conductances and that of post-synaptic currents. The latter is dependent not only on the former, but also on the temporal lag between the excitatory and inhibitory conductances, as well as the strength of the afferent signal. The proposed LFP model provides a method for decomposing the LFP recordings near the soma of layer IV pyramidal neurons in the barrel cortex of anaesthetised rats into two highly correlated components with opposite polarity. The temporal dynamics and the proportional balance of the two components are comparable to the excitatory and inhibitory post-synaptic currents computed from the HH model. This suggests that the two components of the LFP reflect the underlying excitatory and inhibitory post-synaptic currents of the local neural population. We further used the model to decompose a sequence of evoked LFP responses under repetitive electrical stimulation (5 Hz) of the whisker pad. We found that as neural responses adapted, the excitatory and inhibitory components also adapted proportionately, while the temporal lag between the onsets of the two components increased during frequency adaptation. Our results demonstrated that the balance between neural excitation and inhibition can be investigated using extracellular recordings. Extension of the model to incorporate multiple compartments should allow more quantitative interpretations of surface Electroencephalography (EEG) recordings into components reflecting the excitatory, inhibitory and passive ionic current flows generated by local neural populations.
Resumo:
In this work we consider the rendering equation derived from the illumination model called Cook-Torrance model. A Monte Carlo (MC) estimator for numerical treatment of the this equation, which is the Fredholm integral equation of second kind, is constructed and studied.
Resumo:
The dependence of much of Africa on rain fed agriculture leads to a high vulnerability to fluctuations in rainfall amount. Hence, accurate monitoring of near-real time rainfall is particularly useful, for example in forewarning possible crop shortfalls in drought-prone areas. Unfortunately, ground based observations are often inadequate. Rainfall estimates from satellite-based algorithms and numerical model outputs can fill this data gap, however rigorous assessment of such estimates is required. In this case, three satellite based products (NOAA-RFE 2.0, GPCP-1DD and TAMSAT) and two numerical model outputs (ERA-40 and ERA-Interim) have been evaluated for Uganda in East Africa using a network of 27 rain gauges. The study focuses on the years 2001 to 2005 and considers the main rainy season (February to June). All data sets were converted to the same temporal and spatial scales. Kriging was used for the spatial interpolation of the gauge data. All three satellite products showed similar characteristics and had a high level of skill that exceeded both model outputs. ERA-Interim had a tendency to overestimate whilst ERA-40 consistently underestimated the Ugandan rainfall.
Resumo:
In order to harness the computational capacity of dissociated cultured neuronal networks, it is necessary to understand neuronal dynamics and connectivity on a mesoscopic scale. To this end, this paper uncovers dynamic spatiotemporal patterns emerging from electrically stimulated neuronal cultures using hidden Markov models (HMMs) to characterize multi-channel spike trains as a progression of patterns of underlying states of neuronal activity. However, experimentation aimed at optimal choice of parameters for such models is essential and results are reported in detail. Results derived from ensemble neuronal data revealed highly repeatable patterns of state transitions in the order of milliseconds in response to probing stimuli.
Resumo:
The Newton‐Raphson method is proposed for the solution of the nonlinear equation arising from a theoretical model of an acid/base titration. It is shown that it is necessary to modify the form of the equation in order that the iteration is guaranteed to converge. A particular example is considered to illustrate the analysis and method, and a BASIC program is included that can be used to predict the pH of any weak acid/weak base titration.
Resumo:
DNA-strand exchange is a vital step in the recombination process, of which a key intermediate is the four-way DNA Holliday junction formed transiently in most living organisms. Here, the single-crystal structure at a resolution of 2.35 Å of such a DNA junction formed by d(CCGGTACCGG)2, which has crystallized in a more highly symmetrical packing mode to that previously observed for the same sequence, is presented. In this case, the structure is isomorphous to the mismatch sequence d(CCGGGACCGG)2, which reveals the roles of both lattice and DNA sequence in determining the junction geometry. The helices cross at the larger angle of 43.0° (the previously observed angle for this sequence was 41.4°) as a right-handed X. No metal cations were observed; the crystals were grown in the presence of only group I counter-cations.
Resumo:
This paper employs an extensive Monte Carlo study to test the size and power of the BDS and close return methods of testing for departures from independent and identical distribution. It is found that the finite sample properties of the BDS test are far superior and that the close return method cannot be recommended as a model diagnostic. Neither test can be reliably used for very small samples, while the close return test has low power even at large sample sizes
Resumo:
Cyclamen colchicum has a mixed history in the hands of botanists. This paper examines the genetic identity of a group of wild Cyclamen populations from the Caucasus to discover whther they are Cyclamen colchicum, C. purpurascens or a mixture of the two. The collections supplemented by material collected at the type locality for C. colchicum, proved to be a single but variable genetic group of C. colchicum that was distinct from C. purpurascens.
Resumo:
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilise the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross-section geometry and channel long-profile variability on flood dynamics is examined using an ensemble of a 1D-2D hydraulic model (LISFLOOD-FP) of the 1:2102 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of hypothetical scenarios of channel morphology were constructed based on a simple velocity based model of critical entrainment. A Monte-Carlo simulation framework was used to quantify the effects of channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics, and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected a good approximation of the observed patterns of spatial erosion despite its overestimation of erosion depths. The effect of uncertainty on channel long-profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel-bed rivers like the one used in this research.
Resumo:
Existing methods of dive analysis, developed for fully aquatic animals, tend to focus on frequency of behaviors rather than transitions between them. They, therefore, do not account for the variability of behavior of semiaquatic animals, and the switching between terrestrial and aquatic environments. This is the first study to use hidden Markov models (HMM) to divide dives of a semiaquatic animal into clusters and thus identify the environmental predictors of transition between behavioral modes. We used 18 existing data sets of the dives of 14 American mink (Neovison vison) fitted with time-depth recorders in lowland England. Using HMM, we identified 3 behavioral states (1, temporal cluster of dives; 2, more loosely aggregated diving within aquatic activity; and 3, terminal dive of a cluster or a single, isolated dive). Based on the higher than expected proportion of dives in State 1, we conclude that mink tend to dive in clusters. We found no relationship between temperature and the proportion of dives in each state or between temperature and the rate of transition between states, meaning that in our study area, mink are apparently not adopting different diving strategies at different temperatures. Transition analysis between states has shown that there is no correlation between ambient temperature and the likelihood of mink switching from one state to another, that is, changing foraging modes. The variables provided good discrimination and grouped into consistent states well, indicating promise for further application of HMM and other state transition analyses in studies of semiaquatic animals.
Resumo:
Modelling the interaction of terahertz(THz) radiation with biological tissueposes many interesting problems. THzradiation is neither obviously described byan electric field distribution or anensemble of photons and biological tissueis an inhomogeneous medium with anelectronic permittivity that is bothspatially and frequency dependent making ita complex system to model.A three-layer system of parallel-sidedslabs has been used as the system throughwhich the passage of THz radiation has beensimulated. Two modelling approaches havebeen developed a thin film matrix model anda Monte Carlo model. The source data foreach of these methods, taken at the sametime as the data recorded to experimentallyverify them, was a THz spectrum that hadpassed though air only.Experimental verification of these twomodels was carried out using athree-layered in vitro phantom. Simulatedtransmission spectrum data was compared toexperimental transmission spectrum datafirst to determine and then to compare theaccuracy of the two methods. Goodagreement was found, with typical resultshaving a correlation coefficient of 0.90for the thin film matrix model and 0.78 forthe Monte Carlo model over the full THzspectrum. Further work is underway toimprove the models above 1 THz.
Resumo:
Purpose – The purpose of this paper is to investigate the effect of choices of model structure and scale in development viability appraisal. The paper addresses two questions concerning the application of development appraisal techniques to viability modelling within the UK planning system. The first relates to the extent to which, given intrinsic input uncertainty, the choice of model structure significantly affects model outputs. The second concerns the extent to which, given intrinsic input uncertainty, the level of model complexity significantly affects model outputs. Design/methodology/approach – Monte Carlo simulation procedures are applied to a hypothetical development scheme in order to measure the effects of model aggregation and structure on model output variance. Findings – It is concluded that, given the particular scheme modelled and unavoidably subjective assumptions of input variance, that simple and simplistic models may produce similar outputs to more robust and disaggregated models. Evidence is found of equifinality in the outputs of a simple, aggregated model of development viability relative to more complex, disaggregated models. Originality/value – Development viability appraisal has become increasingly important in the planning system. Consequently, the theory, application and outputs from development appraisal are under intense scrutiny from a wide range of users. However, there has been very little published evaluation of viability models. This paper contributes to the limited literature in this area.
Resumo:
The persistence of investment performance is a topic of perennial interest to investors. Efficient Markets theory tells us that past performance can not be used to predict future performance yet investors appear to be influenced by the historical performance in making their investment allocation decisions. The problem has been of particular interest to investors in real estate; not least because reported returns from investment in real estate are serially correlated thus implying some persistence in investment performance. This paper applies the established approach of Markov Chain analysis to investigate the relationship between past and present performance of UK real estate over the period 1981 to 1996. The data are analysed by sector, region and size. Furthermore some variations in investment performance classification are reported and the results are shown to be robust.