56 resultados para DENSITY-FUNCTIONAL CALCULATIONS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new synthetic route towards the mixed-metal cluster [OS2Ru(CO)(12)] is described together with the syntheses of its PPh3 and iPr-AcPy (iPr-AcPy = 2-acetylpyridine-N-isopropylimine) derivatives. The molecular structures of the novel clusters [Os2Ru(CO)(11)(PPh3)] and [Os2Ru(CO)(10)(iPr-AcPy)] were determined on the basis of crystalline solid solutions of the Os2Ru and corresponding Os-3 species. The structures reveal that coordination of the Lewis bases occurs exclusively at the ruthenium site of [Os2Ru(CO)(12)], which is in agreement with density functional theory (DFT) calculations on several structural isomers of these compounds. According to the time-dependent DFT results, the lowest optically accessible excited state of [Os2Ru(CO)(10)(iPr-AcPy)] has a prevailing sigma(Ru-Os-2)pi*(iPr-AcPy) character, with a partial sigma sigma*(Ru-Os-2) contribution. In weakly coordinating 2-chlorobutane, the excited state has a lifetime tau = 10.4 +/- 1.2 ps and produces biradicals considerably faster than observed for [Os-3(CO)10(iPr-AcPy) (tau = 25.3 +/- 0.7ps)]. In coordinating acetonitrile, the excited state of [Os2Ru(CO)(10)(iPr-AcPy)] decays mono-exponentially with a lifetime tau = 2.1 +/- 0.2 ps. In contrast to [Os-3(CO)(10)(iPr-AcPy)] that forms biradicals as the main primary photoproduct even in strongly coordinating solvents, zwitterion formation from the solvated lowest excited state is observed for the heterometallic cluster. This is concluded from time-resolved absorption studies in the microsecond time domain. Due to the lower tendency of the coordinatively unsaturated Ru+(CO)(2)(iPr-AcPy-/0) moiety to bind a Lewis base, the heteronuclear biradical and zwitterionic photoproducts live significantly shorter than their triosmium counterparts. The influence of the weaker Os-2-Ru(iPr-AcPy) bond on the redox reactivity is clearly reflected in very reactive radical anions formed upon electrochemical reduction of [Os2Ru(CO)(10)(iPr-AcPy)]. The dimer [-OS(CO)(4)-Os(CO)(4)-Ru(CO)(2)(iPr-AcPy)](2)(2-) is the only IR-detectable intermediate reduction product. The dinuclear complex [Os-2(CO)(8)](2-) and insoluble [Ru(CO)(2)(iPr-AcPy)](n), are the ultimate reduction products, proving fragmentation of the OS2Ru core.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stepwise electrochemical reduction of the complex fac-[Mn(Br)(CO)(3)(tmbp)] (tmbp = 4,4',5,5'-tetramethyl-2,2'-biphosphinine) produces the dimer [Mn(CO)(3)(tmbp)](2) and the five-coordinate anion [Mn(CO)(3)(tmbp)](-). All three members of the redox series have been characterized by single-crystal X-ray diffraction. The crystallographic data provide valuable insight into the localization of the added electrons on the (carbonyl)manganese and tmbp centers. In particular, the formulation of the two-electron-reduced anion as [Mn-0(CO)(3)(tmbp(-))](-) also agrees with the analysis of its IR nu(CO) wavenumbers and with the results of density functional theoretical (DFT) MO calculations on this compound. The strongly delocalized pi-bonding in the anion stabilizes its five-coordinate geometry and results in the appearance of several mixed Mn-to-tmbp charge-transfer/IL(tmbp) transitions in the near-UV-vis spectral region. A thorough voltammetric and UV-vis/IR spectroelectrochemical study of the reduction path provided evidence for a direct formation of [Mn(CO)(3)(tmbp)](-) via a two-electron ECE mechanism involving the [Mn(CO)(3)(tmbp)](.) radical transient. At ambient temperature [Mn(CO)(3)(tmbp)](-) reacts rapidly with nonreduced fac-[Mn(Br)(CO)(3)(tmbp)] to produce [Mn(CO)(3)(tmbp)](2). Comparison with the analogous 2,2'-bipyridine complexes has revealed striking similarity in the bonding properties and reactivity, despite the stronger pi-acceptor character of the tmbp ligand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimentally and theoretically determined infrared spectra are reported for a series of straight-chain perfluorocarbons: C2F6, C3F8, C4F10, C5F12, C6F14, and C8F18. Theoretical spectra were determined using both density functional (DFT) and ab initio methods. Radiative efficiencies (REs) were determined using the method of Pinnock et al. (1995) and combined with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). Theoretically determined absorption cross sections were within 10% of experimentally determined values. Despite being much less computationally expensive, DFT calculations were generally found to perform better than ab initio methods. There is a strong wavenumber dependence of radiative forcing in the region of the fundamental C-F vibration, and small differences in wavelength between band positions determined by theory and experiment have a significant impact on the REs. We apply an empirical correction to the theoretical spectra and then test this correction on a number of branched chain and cyclic perfluoroalkanes. We then compute absorption cross sections, REs, and GWPs for an additional set of perfluoroalkenes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)2][Fe(hapto4-P2C2tBu2)2] (K1), [K([18]crown-6)(thf)2][C(h4-P2C2tBu2)2] (K2), and [K([18]crown-6)(thf)2][Co(hapto4-P2C2Ad2)2] (K3, Ad=adamantyl) were obtained from reactions of [K([18crown-6)(thf)2][M(hapto4-C14H10)2] (M=Fe, Co) with tBuCP (1, 2), or with AdCP (3). Neutral sandwiches [M(hapto4-P2C2tBu2)2] (4: M=Fe 5: M=Co) were obtained by oxidizing 1 and 2 with [Cp2Fe]PF6. Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(hapto4-P2C2tBu2)2]-/[M(hapto4-P2C2tBu2)2] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1–5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis,and Moessbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1–3). The molecular structures of 1–5 were determined by using X-ray crystallography. Essentially D2d-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal–ligand pi bonding in 1–5. Possible oxidation state assignments for the metal ions are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot 3.75H(2)O (1), [(CuL2)(3)(mu(3)-OH)](ClO4)(2) (2) and [(CuL3)(3)(mu(3)-OH)](BF4)(2)center dot 0.5CH(3)CN (3) have been synthesized from three tridentate Schiff bases HL1, HL2, and HL3 (HL1 = 2-[(2-amino-ethylimino)-methyl]-phenol, HL2 = 2-[(2-methylamino-ethylimino)-methyl]-phenol and HL3 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol). The complexes are characterized by single-crystal X-ray diffraction analyses, IR, UV-vis and EPR spectroscopy, and variable-temperature magnetic measurements. All the compounds contain a partial cubane [Cu3O4] core consisting of the trinuclear unit [(CuL)(3)(mu(3)-OH)](2+) together with perchlorate or fluoroborate anions. In each of the complexes, the three copper atoms are five-coordinated with a distorted square-pyramidal geometry except in complex 1, in which one of the Cu-II ions of the trinuclear unit is six-coordinate being in addition weakly coordinated to one of the perchlorate anions. Variable-temperature magnetic measurements and EPR spectra indicate an antiferromagnetic exchange coupling between the CuII ions of complexes 1 and 2, while this turned out to be ferromagnetic for complex 3. Experimental values have been fitted according to an isotropic exchange Hamiltonian. Calculations based on Density Functional Theory have also been performed in order to estimate the exchange coupling constants in these three complexes. Both sets of values indicate similar trends and specially calculated J values establish a magneto-structural correlation between them and the Cu-O-Cu bond angle, in that the coupling is more ferromagnetic for smaller bond angle values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2×1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ±22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by −4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (b10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three new Mn(II) coordination compounds {[Mn(NCNCN)2(azpy)]·0.5azpy}n (1), {[Mn(NCS)2(azpy)(CH3OH)2]·azpy}n (2), and [Mn(azpy)2(H2O)4][Mn(azpy)(H2O)5]·4PF6·H2O·5.5azpy (3) (where azpy = 4,4'-azobis-(pyridine)) have been synthesized by self-assembly of the primary ligands, dicyanamide, thiocyanate, and hexafluorophosphate, respectively, together with azpy as the secondary spacer. All three complexes were characterized by elemental analyses, IR spectroscopy, thermal analyses, and single crystal X-ray crystallography. The structural analyses reveal that complex 1 forms a two-dimensional (2D) grid sheet motif These sheets assemble to form a microporous framework that incorporates coordination-free azpy by host-guest pi center dot center dot center dot pi. and C-H center dot center dot center dot N hydrogen bonding interactions. Complex 2 features azpy bridged one-dimensional (ID) chains of centrosymmetric [Mn(NCS)(2)(CH3OH)(2)} units which form a 2D porous sheet via a CH3 center dot center dot center dot pi supramolecular interaction. A guest azpy molecule is incorporated within the pores by strong H-bonding interactions. Complex 3 affords a 0-D motif with two monomeric Mn(II) units in the asymmetric unit. There exist pi center dot center dot center dot pi, anion center dot center dot center dot pi, and strong hydrogen bonding interactions between the azpy, water, and the anions. Density functional theory (DFT) calculations, at the M06/6-31+G* level of theory, are used to characterize a great variety of interactions that explicitly show the importance of host-guest supramolecular interactions for the stabilization of coordination compounds and creation of the fascinating three-dimensional (3D) architecture of the title compounds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reaction of [Cu(pic)2]·2H2O (where pic stands for 2-picolinato) with 2-({[2-(dimethylamino)ethyl]amino}methyl)phenol (HL1) produces the square-pyramidal complex [CuL1(pic)] (1), which crystallizes as a conglomerate (namely a mixture of optically pure crystals) in the Sohncke space group P212121. The use of the methylated ligand at the benzylic position, i.e. (±)-2-(1-{[2-(dimethylamino)ethyl]amino}ethyl)phenol (HL2), yields the analogous five-coordinate complex [CuL2(pic)] (2) that crystallizes as a true racemate (namely the crystals contain both enantiomers) in the centrosymmetric space group P21/c. Density functional theory (DFT) calculations indicate that the presence of the methyl group indeed leads to a distinct crystallization behaviour, not only by intramolecular steric effects, but also because its involvement in non-covalent C–H···π and hydrophobic intermolecular contacts appears to be an important factor contributing to the crystal-lattice (stabilizing) energy of 2

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The trans-[Cu2L2Cl2] (1), and cis-[Cu2L2Cl2]·H2O (2) isomers of a diphenoxido bridged Cu2O2 core have been synthesized using a tridentate reduced Schiff base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol. The geometry around Cu(II) is intermediate between square pyramid and trigonal bipyramid (Addison parameter, tau = 0.463) in 1 but nearly square pyramidal (tau = 0.049) in 2. The chloride ions are coordinated to Cu(II) and are trans oriented in 1 but cis oriented in 2. Both isomers have been optimized using density functional theory (DFT) calculations and it is found that the trans isomer is 7.2 kcal mol(-1) more favorable than the cis isomer. However, the hydrogen bonding interaction of crystallized water molecule with chloride ions compensates for the energy difference and stabilizes the cis isomer. Both complexes have been converted to a very rare phenoxido-azido bridged trinuclear species, [Cu3L2(mu(1,1)-N-3)(2)(H2O)(2)(ClO4)(2)] (3) which has also been characterized structurally. All the complexes are antiferromagnetically coupled but the magnitude of the coupling constants are significantly different (J = -156.60, -652.31, and -31.54 cm(-1) for 1, 2, and 3 respectively). Density functional theory (DFT) calculations have also been performed to gain further insight into the qualitative theoretical interpretation on the overall magnetic behavior of the complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three new phenylmercury(II) and one mercury(II) dithiocarbamate complexes viz. PhHg S2CN(PyCH2) Bz (1), PhHg S2CN(PyCH2)CH3 (2), PhHg S2CN(Bz)CH3 (3), and [Hg (NCS2(PyCH2)Bz)(2)] (4) (Py = pyridine; Bz = benzyl) have been synthesized and characterized by elemental analyses, IR, electronic absorption, H-1 and C-13 NMR spectroscopy. The crystal structures of 1, 2 and 3 showed a linear S-Hg-C core at the centre of the molecule, in which the metal atom is bound to the sulfur atom of the dithiocarbamate ligand and a carbon atom of the aromatic ring. In contrast the crystal structure of 4 showed a linear S-Hg-S core at the Hg(II) centre of the molecule. Weak intermolecular Hg center dot center dot center dot N (Py) interactions link molecules into a linear chain in the case of 1, whereas chains of dimers are formed in 2 through intermolecular Hg center dot center dot center dot N (Py) and Hg center dot center dot center dot S interactions. 3 forms a conventional face-to-edge dimeric structure through intermolecular Hg center dot center dot center dot S secondary bonding and 4 forms a linear chain of dimers through face-to-face Hg center dot center dot center dot S secondary bonding. In order to elucidate the nature of these secondary bonding interactions and the electronic absorption spectra of the complexes, ab initio quantum chemical calculations at the MP2 level and density functional theory calculations were carried out for 1-3. Complexes 1 and 2 exhibited photoluminescent properties in the solid state as well as in the solution phase. Studies indicate that Hg center dot center dot center dot S interactions decrease and Hg center dot center dot center dot N interactions increase the chances of photoluminescence in the solid phase

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An uncommon coordination protocol induced by the p-tolylsulfonyl dithiocarbimate ligand (L) [L = p-CH(3)C(6)H(4)SO(2)N CS(2)(2-)] in conjunction with PPh(3) allowed the formation of novel homodimetallic, Cu(2)(PPh(3))(4)L (1), trinuclear heterometallic Cu(2)Ni(L)(2)(PPh(3))(4) (2) and heteroleptic complexes of general formula cis-[M(PPh(3))(2)L] [M = Pd(II) (3), Pt(II) (4)]. The complexes have been characterized by microanalysis, mass spectrometry, IR, (1)H, (13)C and (31)P NMR and electronic absorption spectra and single-crystal X-ray crystallography. 2 uniquely consists of square planar, trigonal planar and tetrahedral coordination spheres within the same molecule. In both heteroleptic complexes 3 and 4 the orientation of aromatic protons of PPh(3) ligand towards the Pd(II) and Pt(II) center reveals C-H center dot center dot center dot Pd and C-H center dot center dot center dot Pt rare intramolecular anagostic or preagostic interactions. These complexes exhibit photoluminescent properties in solution at room temperature arising mainly from intraligand charge transfer (ILCT) transitions. The assignment of electronic absorption bands has been corroborated by time dependent density functional theory (TD-DFT) calculations. Complexes 1 and 2 with sigma(rt) values similar to 10(-6) S cm(-1) show semi-conductor properties in the temperature range 313-403 K whereas 3 and 4 exhibit insulating behaviour.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use density functional theory calculations with Hubbard corrections (DFT+U) to investigate electronic aspects of the interaction between ceria surfaces and gold atoms. Our results show that Au adatoms at the (111) surface of ceria can adopt Au0, Au+ or Au� electronic configurations depending on the adsorption site. The strongest adsorption sites are on top of the surface oxygen and in a bridge position between two surface oxygen atoms, and in both cases charge transfer from the gold atom to one of the Ce cations at the surface is involved. Adsorption at other sites, including the hollow sites of the surface, and an O–Ce bridging site, is weaker and does not involve charge transfer. Adsorption at an oxygen vacancy site is very strong and involves the formation of an Au� anion. We argue that the ability of gold atoms to stabilise oxygen vacancies at the ceria surface by moving into the vacancy site and attracting the excess electrons of the defect could be responsible for the enhanced reducibility of ceria surfaces in the presence of gold. Finally, we rationalise the differences in charge transfer behaviour from site to site in terms of the electrostatic potential at the surface and the coordination of the species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The phosphine-stabilised gold cluster [Au6(Ph2P-o-tolyl)6](NO3)2 is converted into an active nanocatalyst for the oxidation of benzyl alcohol through low-temperature peroxide-assisted removal of the phosphines, avoiding the high-temperature calcination process. The process was monitored using in-situ X-ray absorption spectroscopy, which revealed that after a certain period of the reaction with tertiary butyl hydrogen peroxide, the phosphine ligands are removed to form nanoparticles of gold which matches with the induction period seen in the catalytic reaction. Density functional theory calculations show that the energies required to remove the ligands from the [Au6Ln]2+ increase significantly with successive removal steps, suggesting that the process does not occur at once but sequentially. The calculations also reveal that ligand removal is accompanied by dramatic re-arrangements in the topology of the cluster core.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using a combination of density functional theory calculations and statistical mechanics, we show that a wide range of intermediate compositions of ceria – zirconia solid solutions are thermodynamically metastable with respect to phase separation into Ce-rich and Zr-rich oxides. We estimate that the maximum equilibrium concentration of Zr in CeO2 at 1373 K is ~2%, and therefore equilibrated samples with higher Zr content are expected to exhibit heterogeneity at the atomic scale. We also demonstrate that in the vicinity of the (111) surface, cation redistribution at high temperatures will occur with significant Ce enrichment of the surface, which we attribute to the more covalent character of Zr-O bonds compared to Ce-O bonds. Although the kinetic barriers for cation diffusion normally prevent the decomposition/segregation of ceria-zirconia solid solutions in typical catalytic applications, the separation behaviour described here can be expected to occur in modern three-way catalytic converters, where very high temperatures are reached.