101 resultados para Cyproterone Acetate
Resumo:
Three new linear trinuclear nickel(II) complexes, [Ni-3(salpen)(2)(OAc)(2)(H2O)(2)]center dot 4H(2)O (1) (OAc = acetate, CH3COO-), [Ni-3(salpen)(2)(OBz)(2)] (2) (OBz=benzoate, PhCOO-) and [Ni-3(salpen)(2)(OCn)(2)(CH3CN)(2)] (4) (OCn = cinnamate, PhCH=CHCOO-), H(2)salpen = tetradentate ligand, N,N'-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni-3(salpen)(2)(OPh)(2)(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO-) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the syn-syn bridging bidentate mode of the carboxylate group remain the same in complexes 1-4, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2-300 K) magnetic susceptibility measurements show that complexes 1-4 are antiferromagnetically coupled (J = -3.2(1), -4.6(1). -3.2(1) and -2.8(1) cm(-1) in 1-4, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 1-4 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm(-1) for 1-4, respectively). The highest D value of +14.2(2) and +9.8(2) cm(-1) for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
In the reaction of equimolar amounts of copper(II) acetate with 2,2'-dipyridylamine (DPA) in aqueous tetrahydrofuran, in presence of KOH, aerial CO2 is spontaneously fixed to the carbonate anion yielding [Cu(DPA)(CO3)] . 3H(2)O (1). X-ray crystallography shows the presence of zigzag ribbons of cyclic water pentamers in the channels of a chain-like metallo-organic framework. The water ribbons are stabilised by hydrogen bonds to the metallo-organic backbone. Each (H2O)(5) pentamer is approximately planar.
Resumo:
The morphology in the solid state of a series of triblock copolymers comprising a poly(ethylene glycol) (PEG) midblock and symmetric poly(gamma-benzyl-L-glutamate) (PBLG) end blocks has been studied using X-ray scattering and microscopy techniques. Transmission electron microscopy (TEM) on samples selectively stained with uranyl acetate provided clear assignment of morphologies for as-cast and annealed samples. The thickness of both PEG and PBLG domains was in good agreement with calculations based on the conformations of the respective chains, allowing for the crystal or amorphous state of PEG and the a-helical or P-sheet structure of the PBLG. Atomic force microscopy provided complementary information on surface morphology for several samples that was in good agreement with the structure observed by TEM. A morphology diagram was constructed. Cylindrical structures were observed for ordered samples with low f(PBLG), whereas at higher f(PLBG) there was evidence for broken lamellar and "hockey puck" nanostructures. Regular lamellae were observed for intermediate compositions.
Resumo:
One of the key hindrances on development of solid catalysts containing cobalt species for partial oxidation of organic molecules at mild conditions in conventional liquid phase is the severe metal leaching. The leached soluble Co species with a higher degree of freedom always out-performs those of solid supported Co species in oxidation catalysis. However, the homogeneous Co species concomitantly introduces separation problems. We have recently reponed for the first time, a new oxidation catalyst system for the oxidation of organic molecules in supercritical CO2 using the principle of micellar catalysis. [CF3(CF2)(8)COO](2)Co.xH(2)O (the fluorinated anionic moiety forms aqueous reverse micelles carrying water-soluble Co2+ cations in scCO(2)) was previously shown to be extremely active for the oxidation of toluene in the presence of sodium bromide in water-CO2 mixture, giving 98% conversion and 99% selectivity to benzoic acid at 120 degreesC. In this study, we show that the effects of varying the type of surfactant counterions and the length of the surfactant chains on catalysis. It is found that the use of [CF3(CF2)(8)COO](2)Mg.yH(2)O/Co(II) acetate is as effective as the [CF3(CF2)(8)COO](2)Co.xH(2)O and the fluorinated chain length used has a subtle effect on the catalytic rate measured. It is also demonstrated that this new type of micellar catalyst in scCO(2) can be easily separated via CO2 depressurisation and be reused without noticeable deactivation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Formate stimulates growth of a new bacterium from human feces. With high formate, it ferments glucose to acetate via the Wood-Ljungdahl pathway. The original isolate fermented vegetable cellulose and carboxymethylcellulose, but it lost this ability after storage at -76degreesC. 16S rRNA gene sequencing identifies it as a distinct line within the Clostridium coccoides supra-generic rRNA grouping. We propose naming it Bryantella formatexigens gen. nov., sp. nov.
Resumo:
The aim of this study was to develop selectively fermented (prebiotic) carbohydrate molecules which would also result in the generation of butyric acid. Glucooligosaccharides produced by Gluconobacter oxydans NCIMB 4943 from various types of maltodextrins were evaluated for their fermentation by mixed cultures of human colonic microflora. The selectivity of growth of desirable bacteria (bifidobacteria, lactobacilli) was studied in stirred pH-controlled (6.8) batch cultures. Bacterial populations were enumerated using fluorescent in situ hybridization (FISH). Gluco-oligosaccharides resulted in significantly (P<0.05) increased numbers of bifidobacteria and lactobacilli within 24 hours. Bacteroides, clostridial and eubacterial populations were slightly decreased at 48 h. There was very little difference in selectivity between the maltodextrin substrates and the products, although maltodextrin displayed a slightly less selective fermentation than the gluco-oligosaccharide products, also stimulating the growth of bacteroides, clostridia and eubacteria. Gluco-oligosaccharides, produced from G19 maltodextrin, resulted in the best prebiotic effect with the highest prebiotic index (PI) of 5.90 at 48 hours. Acetate, propionate and butyrate were all produced from glucooligosaccharides, derived from G19 maltodextrin, at 48 hours but no lactate or formate were detected.
Resumo:
Background: The pathogenesis of diarrhea in patients receiving enteral feeding includes colonic water secretion, antibiotic prescription, and enteropathogenic colonization, each of which involves an interaction with the gastrointestinal microbiota. Objective: The objective was to investigate temporal changes in the concentrations of fecal microbiota and short-chain fatty acids (SCFAs) in patients starting 14-d of enteral feeding and to compare these changes between patients who do and do not develop diarrhea. Design: Twenty patients starting exclusive nasogastric enteral feeding were monitored for 14 d. Fecal samples were collected at the start, middle, and end of this period and were analyzed for major bacterial groups by using culture independent fluorescence in situ hybridization and for SCFAs by using gas-liquid chromatography. Results: Although no significant changes in fecal microbiota or SCFAs were observed during enteral feeding, stark alterations occurred within individual patients. Ten patients (50%) developed diarrhea, and these patients had significantly higher concentrations of clostridia (P = 0.026) and lower concentrations (P = 0.069) and proportions (P = 0.029) of bifidobacteria. Patients with and without diarrhea had differences in the proportion of bifidobacteria (median: 0.4% and 3.7%; interquartile range: 0.8 compared with 4.3; P = 0.035) and clostridia (median: 10.4% and 3.7%; interquartile range: 14.7 compared with 7.0; P = 0.063), respectively, even at the start of enteral feeding. Patients who developed diarrhea had higher concentrations of total fecal SCFAs (P = 0.044), acetate (P = 0.029), and butyrate (P = 0.055). Conclusion: Intestinal dysbiosis occurs in patients who develop diarrhea during enteral feeding and may be involved in its pathogenesis. Am J Clin Nutr 2009; 89: 240-7.
Resumo:
Covariation in the structural composition of the gut microbiome and the spectroscopically derived metabolic phenotype (metabotype) of a rodent model for obesity were investigated using a range of multivariate statistical tools. Urine and plasma samples from three strains of 10-week-old male Zucker rats (obese (fa/fa, n = 8), lean (fal-, n = 8) and lean (-/-, n = 8)) were characterized via high-resolution H-1 NMR spectroscopy, and in parallel, the fecal microbial composition was investigated using fluorescence in situ hydridization (FISH) and denaturing gradient gel electrophoresis (DGGE) methods. All three Zucker strains had different relative abundances of the dominant members of their intestinal microbiota (FISH), with the novel observation of a Halomonas and a Sphingomonas species being present in the (fa/fa) obese strain on the basis of DGGE data. The two functionally and phenotypically normal Zucker strains (fal- and -/-) were readily distinguished from the (fa/fa) obese rats on the basis of their metabotypes with relatively lower urinary hippurate and creatinine, relatively higher levels of urinary isoleucine, leucine and acetate and higher plasma LDL and VLDL levels typifying the (fa/fa) obese strain. Collectively, these data suggest a conditional host genetic involvement in selection of the microbial species in each host strain, and that both lean and obese animals could have specific metabolic phenotypes that are linked to their individual microbiomes.
Resumo:
Prebiotics are nondigestible food ingredients that encourage proliferation of selected groups of the colonic microflora, thereby altering the composition toward a more beneficial community. In the present study, the prebiotic potential of a novel galactooligosaccharide (GOS) mixture, produced by the activity of galactosyltransferases from Bifidobacterium bifidum 41171 on lactose, was assessed in vitro and in a parallel continuous randomized pig trial. In situ fluorescent hybridization with 16S rRNA-targeted probes was used to investigate changes in total bacteria, bifidobacteria, lactobacilli, bacteroides, and Clostridium histolyticum group in response to supplementing the novel GOS mixture. In a 3-stage continuous culture system, the bifidobacterial numbers for the first 2 vessels, which represented the proximal and traverse colon, increased (P < 0.05) after the addition of the oligosaccharide mixture. In addition, the oligosaccharide mixture strongly inhibited the attachment of enterohepatic Escherichia coli (P < 0.01) and Salmonella enterica serotype Typhimurium (P < 0.01) to HT29 cells. Addition of the novel mixture at 4% (wt:wt) to a commercial diet increased the density of bificlobacteria (P < 0.001) and the acetate concentration (P < 0.001), and decreased the pH (P < 0.001) compared with the control diet and the control diet supplemented with inulin, suggesting a great prebiotic potential for the novel oligosaccharide mixture. J. Nutr. 135: 1726-1731, 2005.
Resumo:
Mechanisms underlying milk fat conjugated linoleic acid (CLA) responses to supplements of fish oil were investigated using five lactating cows each fitted with a rumen cannula in a simple experiment consisting of two consecutive 14-day experimental periods. During the first period cows were offered 18 kg dry matter (DM) per day of a basal (B) diet formulated from grass silage and a cereal based-concentrate (0.6 : 0.4; forage : concentrate ratio, on a DM basis) followed by the same diet supplemented with 250 g fish oil per day (FO) in the second period. The flow of non-esterified fatty acids leaving the rumen was measured using the omasal sampling technique in combination with a triple indigestible marker method based on Li-Co-EDTA, Yb-acetate and Cr-mordanted straw. Fish oil decreased DM intake and milk yield, but had no effect on milk constituent content. Milk fat trans-11C(18:1), total trans-C-18:1, cis-9 trans-11 CLA, total CLA, C-18 :2 (n- 6) and total C-18:2 content were increased in response to fish oil from 1.80, 4.51, 0.39, 0. 56, 0.90 and 1.41 to 9.39, 14.39, 1.66, 1.85, 1.25 and 4.00 g/100 g total fatty acids, respectively. Increases in the cis-9, trans-11 isomer accounted for proportionately 0.89 of the CLA response to fish oil. Furthermore, fish oil decreased the flow of C-18:0 (283 and 47 g/day for B and FO, respectively) and increased that of trans-C-18:1 fatty acids entering the omasal canal (38 and 182 g/day). Omasal flows of trans-C-18:1 acids with double bonds in positions from delta-4 to -15 inclusive were enhanced, but the effects were isomer dependent and primarily associated with an increase in trans-11C(18:1) leaving the rumen (17.1 and 121.1 g/day for B and FO, respectively). Fish oil had no effect on total (4.36 and 3.50 g/day) or cis-9, trans-11 CLA (2.86 and 2.08 g/day) entering the omasal canal. Flows of cis-9, trans-11 CLA were lower than the secretion of this isomer in milk. Comparison with the transfer of the trans-9, trans-11 isomer synthesized in the rumen suggested that proportionately 0.66 and 0.97 of cis-9, trans-11 CLA was derived from endogenous conversion of trans-11 C-18:1 in the mammary gland for B and FO, respectively. It is concluded that fish oil enhances milk fat cis-9, trans-11 CLA content in response to increased supply of trans-11 C-18:1 that arises from an inhibition of trans C-18:1 reduction in the rumen.
Resumo:
Short-chain fructooligosaccharides (scFOS) and other prebiotics are used to selectively stimulate the growth and activity of lactobacilli and bifidobacteria in the colon. However, there is little information on the mechanisms whereby prebiotics exert their specific effects upon such microorganisms. To study the genomic basis of scFOS metabolism in Lactobacillus plantarum WCFS1, two-color microarrays were used to screen for differentially expressed genes when grown on scFOS compared to glucose (control). A significant up-regulation (8- to 60-fold) was observed with a set of only five genes located in a single locus and predicted to encode a sucrose phosphoenolpyruvate transport system (PTS), a beta-fructofuranosidase, a fructokinase, an alpha-glucosidase, and a sucrose operon repressor. Several other genes were slightly overexpressed, including pyruvate dehydrogenase. For the latter, no detectable activity in L. plantarum under various growth conditions has been previously reported. A mannose-PTS likely to encode glucose uptake was 50-fold down-regulated as well as, to a lower extent, other PTSs. Chemical analysis of the different moieties of scFOS that were depleted in the growth medium revealed that the trisaccharide 1-kestose present in scFOS was preferentially utilized, in comparison with the tetrasaccharide nystose and the pentasaccharide fructofuranosylnystose. The main end products of scFOS fermentation were lactate and acetate. This is the first example in lactobacilli of the association of a sucrose PTS and a beta-fructofuranosidase that could be used for scFOS degradation.
Resumo:
Previous studies comparing the biokinetics of deuterated natural (RRR) and synthetic (all-rac) α-tocopherol (vitamin E) used a simultaneous ingestion or competitive uptake approach and reported relative bioavailability ratios close to 2:1, higher than the accepted biopotency ratio of 1.36:1. The aim of the current study was to compare the biokinetics of deuterated natural and synthetic vitamin E using a noncompetitive uptake model both before and after vitamin E supplementation in a distinct population. Healthy men (n = 10) carrying the apolipoprotein (apo)E4 genotype completed a randomized crossover study, comprised of two 4-wk treatments with 400 mg/d (RRR-α-tocopheryl and all-rac-α-tocopheryl acetate) with a 12-wk washout period between treatments. Before and after each treatment period, the subjects consumed a capsule containing 150 mg deuterated α-tocopheryl acetate in either the PRR or all-rac form depending on their treatment regimen. Blood was obtained up to 48 h after ingestion, and tocopherols analyzed by LC/MS. After deuterated all-rac administration, plasma deuterated tocopherol maximum concentrations and area under the concentration vs. time curves (AUC) were lower than those following RRR administration. The RRR:all-rac ratios determined from the deuterated biokinetic profiles (maximum concentration; C-max) and AUCs were 1.35:1 &PLUSMN; 0.17 and 1.33:1 &PLUSMN; 0.18, respectively. The 4-wk supplementation with either PRR or all-rac significantly increased plasma a-tocopherol concentrations (P < 0.001), but decreased the plasma response to newly absorbed deuterated RRR or all-rac α-tocopherol. Using a noncompetitive uptake approach, the relative bioavailability of natural to synthetic vitamin E in apoE4 males was close to the currently accepted biopotency ratio of 1.36:1.
Resumo:
We have compared the biokinetics of deuterated natural (RPR) and synthetic (all rac) alpha-tocopherol in male apoE4-carrying smokers and nonsmokers. In a randomized, crossover study subjects underwent two 4-week treatments (400 mg/day) with undeuterated RRR- and all rac-alpha-tocopheryl acetate around a 12-week washout. Before and after each supplementation period subjects underwent a biokinetic protocol (48 h) with 150 mg deuterated RRR- or all rac-alpha-tocopheryl acetate. During the biokinetic protocols, the elimination of endogenous plasma alpha-tocopherol was significantly faster in smokers (P < 0.05). However, smokers had a lower uptake of deuterated RRR than nonsmokers, but there was no difference in uptake of deuterated all rac. The supplementation regimes significantly raised plasma alpha-tocopherol (P < 0.001) with no differences in response between smokers and nonsmokers or between alpha-tocopherol forms. Smokers had significantly lower excretion of alpha-carboxyethyl-hydroxychroman than nonsmokers following supplementation (P < 0.05). Nonsmokers excreted more alpha-carboxyethyl-hydroxychroman following RRR than all rac; however, smokers did not differ in excretion between forms. At baseline, smokers had significantly lower ascorbate (P < 0.01) and higher F(2-)isoprostarres (P < 0.05). F-2-isoprostanes in smokers remained unchanged during the study, but increased in nonsmokers following alpha-tocopherol supplementation. These data suggest that apoE4-carrying smokers and nonsmokers differ in their handling of natural and synthetic alpha-tocopherol. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated the use of a bile-salt-hydrolyzing Lactobacillus fermentum strain as a probiotic with potential hypocholesterolemic properties. The effect of L. fermentum on representative microbial populations and overall metabolic activity of the human intestinal microbiota was investigated using a three-stage continuous culture system. Also, the use of galactooligosaccharides as a prebiotic to enhance growth and/or activity of the Lactobacillus strain was evaluated. Administration of L. fermentum resulted in a decrease in the overall bifidobacterial population (ca. 1 log unit). In the in vitro system, no significant changes were observed in the total bacterial, Lactobacillus, Bacteroides, and clostridial populations through L. fermentum supplementation. Acetate production decreased by 9 to 27%, while the propionate and butyrate concentrations increased considerably (50 to 90% and 52 to 157%, respectively). A general, although lesser, increase in the production of lactate was observed with the administration of the L. fermentum strain. Supplementation of the prebiotic to the culture medium did not cause statistically significant changes in either the numbers or the activity of the microbiota, although an increase in the butyrate production was seen (29 to 39%). Results from this in vitro study suggest that L.Fermentum KC5b is a candidate probiotic which may affect cholesterol metabolism. The short-chain fatty acid concentrations, specifically the molar proportion of propionate and/or bile salt deconjugation, are probably the major mechanism involved in the purported cholesterol-lowering properties of this strain.