177 resultados para Currency forecast errors
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
Data assimilation provides techniques for combining observations and prior model forecasts to create initial conditions for numerical weather prediction (NWP). The relative weighting assigned to each observation in the analysis is determined by its associated error. Remote sensing data usually has correlated errors, but the correlations are typically ignored in NWP. Here, we describe three approaches to the treatment of observation error correlations. For an idealized data set, the information content under each simplified assumption is compared with that under correct correlation specification. Treating the errors as uncorrelated results in a significant loss of information. However, retention of an approximated correlation gives clear benefits.
Resumo:
Resumo:
The decadal predictability of three-dimensional Atlantic Ocean anomalies is examined in a coupled global climate model (HadCM3) using a Linear Inverse Modelling (LIM) approach. It is found that the evolution of temperature and salinity in the Atlantic, and the strength of the meridional overturning circulation (MOC), can be effectively described by a linear dynamical system forced by white noise. The forecasts produced using this linear model are more skillful than other reference forecasts for several decades. Furthermore, significant non-normal amplification is found under several different norms. The regions from which this growth occurs are found to be fairly shallow and located in the far North Atlantic. Initially, anomalies in the Nordic Seas impact the MOC, and the anomalies then grow to fill the entire Atlantic basin, especially at depth, over one to three decades. It is found that the structure of the optimal initial condition for amplification is sensitive to the norm employed, but the initial growth seems to be dominated by MOC-related basin scale changes, irrespective of the choice of norm. The consistent identification of the far North Atlantic as the most sensitive region for small perturbations suggests that additional observations in this region would be optimal for constraining decadal climate predictions.
Resumo:
Using a flexible chemical box model with full heterogeneous chemistry, intercepts of chemically modified Langley plots have been computed for the 5 years of zenith-sky NO2 data from Faraday in Antarctica (65°S). By using these intercepts as the effective amount in the reference spectrum, drifts in zero of total vertical NO2 were much reduced. The error in zero of total NO2 is ±0.03×1015 moleccm−2 from one year to another. This error is small enough to determine trends in midsummer and any variability in denoxification between midwinters. The technique also suggests a more sensitive method for determining N2O5 from zenith-sky NO2 data.
Resumo:
A regional study of the prediction of extratropical cyclones by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) has been performed. An objective feature-tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast error statistics have then been produced for the position, intensity, and propagation speed of the storms. In previous work, data limitations meant it was only possible to present the diagnostics for the entire Northern Hemisphere (NH) or Southern Hemisphere. A larger data sample has allowed the diagnostics to be computed separately for smaller regions around the globe and has made it possible to explore the regional differences in the prediction of storms by the EPS. Results show that in the NH there is a larger ensemble mean error in the position of storms over the Atlantic Ocean. Further analysis revealed that this is mainly due to errors in the prediction of storm propagation speed rather than in direction. Forecast storms propagate too slowly in all regions, but the bias is about 2 times as large in the NH Atlantic region. The results show that storm intensity is generally overpredicted over the ocean and underpredicted over the land and that the absolute error in intensity is larger over the ocean than over the land. In the NH, large errors occur in the prediction of the intensity of storms that originate as tropical cyclones but then move into the extratropics. The ensemble is underdispersive for the intensity of cyclones (i.e., the spread is smaller than the mean error) in all regions. The spatial patterns of the ensemble mean error and ensemble spread are very different for the intensity of cyclones. Spatial distributions of the ensemble mean error suggest that large errors occur during the growth phase of storm development, but this is not indicated by the spatial distributions of the ensemble spread. In the NH there are further differences. First, the large errors in the prediction of the intensity of cyclones that originate in the tropics are not indicated by the spread. Second, the ensemble mean error is larger over the Pacific Ocean than over the Atlantic, whereas the opposite is true for the spread. The use of a storm-tracking approach, to both weather forecasters and developers of forecast systems, is also discussed.
Resumo:
The impact of targeted sonde observations on the 1-3 day forecasts for northern Europe is evaluated using the Met Office four-dimensional variational data assimilation scheme and a 24 km gridlength limited-area version of the Unified Model (MetUM). The targeted observations were carried out during February and March 2007 as part of the Greenland Flow Distortion Experiment, using a research aircraft based in Iceland. Sensitive area predictions using either total energy singular vectors or an ensemble transform Kalman filter were used to predict where additional observations should be made to reduce errors in the initial conditions of forecasts for northern Europe. Targeted sonde data was assimilated operationally into the MetUM. Hindcasts show that the impact of the sondes was mixed. Only two out of the five cases showed clear forecast improvement; the maximum forecast improvement seen over the verifying region was approximately 5% of the forecast error 24 hours into the forecast. These two cases are presented in more detail: in the first the improvement propagates into the verification region with a developing polar low; and in the second the improvement is associated with an upper-level trough. The impact of cycling targeted data in the background of the forecast (including the memory of previous targeted observations) is investigated. This is shown to cause a greater forecast impact, but does not necessarily lead to a greater forecast improvement. Finally, the robustness of the results is assessed using a small ensemble of forecasts.
Resumo:
Background Pharmacy aseptic units prepare and supply injectables to minimise risks. The UK National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors, including near-misses, since 2003. Objectives The cumulative reports from January 2004 to December 2007, inclusive, were analysed. Methods The different variables of product types, error types, staff making and detecting errors, stage errors detected, perceived contributory factors, and potential or actual outcomes were presented by cross-tabulation of data. Results A total of 4691 reports were submitted against an estimated 958 532 items made, returning 0.49% as the overall error rate. Most of the errors were detected before reaching patients, with only 24 detected during or after administration. The highest number of reports related to adult cytotoxic preparations (40%) and the most frequently recorded error was a labelling error (34.2%). Errors were mostly detected at first check in assembly area (46.6%). Individual staff error contributed most (78.1%) to overall errors, while errors with paediatric parenteral nutrition appeared to be blamed on low staff levels more than other products were. The majority of errors (68.6%) had no potential patient outcomes attached, while it appeared that paediatric cytotoxic products and paediatric parenteral nutrition were associated with greater levels of perceived patient harm. Conclusions The majority of reports were related to near-misses, and this study highlights scope for examining current arrangements for checking and releasing products, certainly for paediatric cytotoxic and paediatric parenteral nutrition preparations within aseptic units, but in the context of resource and capacity constraints.