46 resultados para Crop- water modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water vapour modulates energy flows in Earth's climate system through transfer of latent heat by evaporation and condensation and by modifying the flows of radiative energy both in the longwave and shortwave portions of the electromagnetic spectrum. This article summarizes the role of water vapour in Earth's energy flows with particular emphasis on (1) the powerful thermodynamic constraint of the Clausius Clapeyron equation, (2) dynamical controls on humidity above the boundary layer (or free-troposphere), (3) uncertainty in continuum absorption in the relatively transparent "window" regions of the radiative spectrum and (4) implications for changes in the atmospheric hydrological cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT. Rattus tanezumi is a serious crop pest within the island of Luzon, Philippines. In intensive flood-irrigated rice field ecosystems of Luzon, female R. tanezumi are known to primarily nest within the tillers of ripening rice fields and along the banks of irrigation canals. The nesting habits of R. tanezumi in complex rice–coconut cropping systems are unknown. AIMS. To identify the natal nest locations of R. tanezumi females in rice–coconut systems of the Sierra Madre Biodiversity Corridor (SMBC), Luzon, during the main breeding season to develop a management strategy that specifically targets their nesting habitat. METHODS. When rice was at the booting to ripening stage, cage-traps were placed in rice fields adjacent to coconut habitat. Thirty breeding adult R. tanezumi females were fitted with radio-collars and successfully tracked to their nest sites. KEY RESULTS. Most R. tanezumi nests (66.7%) were located in coconut groves, five nests (16.7%) were located in rice fields and five nests (16.7%) were located on the rice field edge. All nests were located above ground level and seven nests were located in coconut tree crowns. The median distance of nest sites to the nearest rice field was 22.5m. Most nest site locations had good cover of ground vegetation and understorey vegetation, but low canopy cover. Only one nest location had an understorey vegetation height of less than 20 cm. CONCLUSIONS. In the coastal lowland rice–coconut cropping systems of the SMBC, female R. tanezumi showed a preference for nesting in adjacent coconut groves. This is contrary to previous studies in intensive flood-irrigated rice ecosystems of Luzon, where the species nests mainly in the banks of irrigation canals. It is important to understand rodent breeding ecology in a specific ecosystem before implementing appropriate management strategies. IMPLICATIONS. In lowland rice–coconut cropping systems, coconut groves adjacent to rice fields should be targeted for the 20 management of R. tanezumi nest sites during the main breeding season as part of an integrated ecologically based approach to rodent pest management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been considerable interest in the climate impact of trends in stratospheric water vapor (SWV). However, the representation of the radiative properties of water vapor under stratospheric conditions remains poorly constrained across different radiation codes. This study examines the sensitivity of a detailed line-by-line (LBL) code, a Malkmus narrow-band model and two broadband GCM radiation codes to a uniform perturbation in SWV in the longwave spectral region. The choice of sampling rate in wave number space (Δν) in the LBL code is shown to be important for calculations of the instantaneous change in heating rate (ΔQ) and the instantaneous longwave radiative forcing (ΔFtrop). ΔQ varies by up to 50% for values of Δν spanning 5 orders of magnitude, and ΔFtrop varies by up to 10%. In the three less detailed codes, ΔQ differs by up to 45% at 100 hPa and 50% at 1 hPa compared to a LBL calculation. This causes differences of up to 70% in the equilibrium fixed dynamical heating temperature change due to the SWV perturbation. The stratosphere-adjusted radiative forcing differs by up to 96% across the less detailed codes. The results highlight an important source of uncertainty in quantifying and modeling the links between SWV trends and climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general focus of this paper is the regional estimation of marginal benefits of targeted water pollution abatement to instream uses. Benefit estimates are derived from actual consumer choices of recreational fishing activities and the implied expenditures for various levels of water quality. The methodology is applied to measuring the benefits accruing to recreational anglers in Indiana from the abatement of pollutants that are by-products of agricultural crop production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable intensification is seen as the main route for meeting the world’s increasing demands for food and fibre. As demands mount for greater efficiency in the use of resources to achieve this goal, so the focus on roots and rootstocks and their role in acquiring water and nutrients, and overcoming pests and pathogens, is increasing. The purpose of this review is to explore some of the ways in which understanding root systems and their interactions with soils could contribute to the development of more sustainable systems of intensive production. Physical interactions with soil particles limit root growth if soils are dense, but root–soil contact is essential for optimal growth and uptake of water and nutrients. X-ray microtomography demonstrated that maize roots elongated more rapidly with increasing root–soil contact, as long as mechanical impedance was not limiting root elongation, while lupin was less sensitive to changes in root–soil contact. In addition to selecting for root architecture and rhizosphere properties, the growth of many plants in cultivated systems is profoundly affected by selection of an appropriate rootstock. Several mechanisms for scion control by rootstocks have been suggested, but the causal signals are still uncertain and may differ between crop species. Linkage map locations for quantitative trait loci for disease resistance and other traits of interest in rootstock breeding are becoming available. Designing root systems and rootstocks for specific environments is becoming a feasible target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent past there was a widespread working assumption in many countries that problems of food production had been solved, and that food security was largely a matter of distribution and access to be achieved principally by open markets. The events of 2008 challenged these assumptions, and made public a much wider debate about the costs of current food production practices to the environment and whether these could be sustained. As in the past 50 years, it is anticipated that future increases in crop production will be achieved largely by increasing yields per unit area rather than by increasing the area of cropped land. However, as yields have increased, so the ratio of photosynthetic energy captured to energy expended in crop production has decreased. This poses a considerable challenge: how to increase yield while simultaneously reducing energy consumption (allied to greenhouse gas emissions) and utilizing resources such as water and phosphate more efficiently. Given the timeframe in which the increased production has to be realized, most of the increase will need to come from crop genotypes that are being bred now, together with known agronomic and management practices that are currently under-developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2007, the world reached the unprecedented milestone of half of its people living in cities, and that proportion is projected to be 60% in 2030. The combined effect of global climate change and rapid urban growth, accompanied by economic and industrial development, will likely make city residents more vulnerable to a number of urban environmental problems, including extreme weather and climate conditions, sea-level rise, poor public health and air quality, atmospheric transport of accidental or intentional releases of toxic material, and limited water resources. One fundamental aspect of predicting the future risks and defining mitigation strategies is to understand the weather and regional climate affected by cities. For this reason, dozens of researchers from many disciplines and nations attended the Urban Weather and Climate Workshop.1 Twenty-five students from Chinese universities and institutes also took part. The presentations by the workshop's participants span a wide range of topics, from the interaction between the urban climate and energy consumption in climate-change environments to the impact of urban areas on storms and local circulations, and from the impact of urbanization on the hydrological cycle to air quality and weather prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] A two-dimensional plume model is used to study the interaction between Filchner-Ronne Ice Shelf, Antarctica and its underlying ocean cavity. Ice Shelf Water (ISW) plumes are initiated by the freshwater released from a melting ice shelf and, if they rise, may become supercooled and deposit marine ice due to the pressure increase in the in situ freezing temperature. The aim of this modeling study is to determine the origin of the thick accretions of marine ice at the base of Filchner-Ronne Ice Shelf and thus improve our understanding of ISW flow paths. The model domain is defined from measurements of ice shelf draft, and from this ISW the model is able to predict plumes that exit the cavity in the correct locations. The modeled plumes also produce basal freezing rates that account for measured marine ice thicknesses in the western part of Ronne Ice Shelf. We find that the freezing rate and plume properties are significantly influenced by the confluence of plumes from different meltwater sources. We are less successful in matching observations of marine ice under the rest of Filchner-Ronne Ice Shelf, which we attribute primarily to this model’s neglect of circulations in the ocean outside the plume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model. This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM) datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR). Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irrigation is used frequently in potato cultivation to maximize yield, but water availability may also affect the composition of the crop, with implications for processing properties and food safety. Five varieties of potatoes, including drought-tolerant and -sensitive types, which had been grown with and without irrigation, were analyzed to show the effect of water supply on concentrations of free asparagine, other free amino acids, and sugars and on the acrylamide-forming potential of the tubers. Two varieties were also analyzed under more severe drought stress in a glasshouse. Water availability had profound effects on tuber free amino acid and sugar concentrations, and it was concluded that potato farmers should irrigate only if necessary to maintain the health and yield of the crop, because irrigation may increase the acrylamide-forming potential of potatoes. Even mild drought stress caused significant changes in composition, but these differed from those caused by more extreme drought stress. Free proline concentration, for example, increased in the field-grown potatoes of one variety from 7.02 mmol/kg with irrigation to 104.58 mmol/kg without irrigation, whereas free asparagine concentration was not affected significantly in the field but almost doubled from 132.03 to 242.26 mmol/kg in response to more severe drought stress in the glasshouse. Furthermore, the different genotypes were affected in dissimilar fashion by the same treatment, indicating that there is no single, unifying potato tuber drought stress response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soybean, maize and rice. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soybean at the global and country levels, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index, gross primary production and canopy height better than in the standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an Earth system and crop yield model perspective is encouraging. However, more effort is needed to develop the parametrisation of the model for specific applications. Key future model developments identified include the introduction of processes such as irrigation and nitrogen limitation which will enable better representation of the spatial variability in yield.