82 resultados para Cost Estimation System
Resumo:
Finding an estimate of the channel impulse response (CIR) by correlating a received known (training) sequence with the sent training sequence is commonplace. Where required, it is also common to truncate the longer correlation to a sub-set of correlation coefficients by finding the set of N sequential correlation coefficients with the maximum power. This paper presents a new approach to selecting the optimal set of N CIR coefficients from the correlation rather than relying on power. The algorithm reconstructs a set of predicted symbols using the training sequence and various sub-sets of the correlation to find the sub-set that results in the minimum mean squared error between the actual received symbols and the reconstructed symbols. The application of the algorithm is presented in the context of the TDMA based GSM/GPRS system to demonstrate an improvement in the system performance with the new algorithm and the results are presented in the paper. However, the application lends itself to any training sequence based communication system often found within wireless consumer electronic device(1).
Apodisation, denoising and system identification techniques for THz transients in the wavelet domain
Resumo:
This work describes the use of a quadratic programming optimization procedure for designing asymmetric apodization windows to de-noise THz transient interferograms and compares these results to those obtained when wavelet signal processing algorithms are adopted. A systems identification technique in the wavelet domain is also proposed for the estimation of the complex insertion loss function. The proposed techniques can enhance the frequency dependent dynamic range of an experiment and should be of particular interest to the THz imaging and tomography community. Future advances in THz sources and detectors are likely to increase the signal-to-noise ratio of the recorded THz transients and high quality apodization techniques will become more important, and may set the limit on the achievable accuracy of the deduced spectrum.
Resumo:
Hidden Markov Models (HMMs) have been successfully applied to different modelling and classification problems from different areas over the recent years. An important step in using HMMs is the initialisation of the parameters of the model as the subsequent learning of HMM’s parameters will be dependent on these values. This initialisation should take into account the knowledge about the addressed problem and also optimisation techniques to estimate the best initial parameters given a cost function, and consequently, to estimate the best log-likelihood. This paper proposes the initialisation of Hidden Markov Models parameters using the optimisation algorithm Differential Evolution with the aim to obtain the best log-likelihood.
Resumo:
Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward-constrained regression (FCR) manner. The proposed algorithm selects significant kernels one at a time, while the leave-one-out (LOO) test score is minimized subject to a simple positivity constraint in each forward stage. The model parameter estimation in each forward stage is simply the solution of jackknife parameter estimator for a single parameter, subject to the same positivity constraint check. For each selected kernels, the associated kernel width is updated via the Gauss-Newton method with the model parameter estimate fixed. The proposed approach is simple to implement and the associated computational cost is very low. Numerical examples are employed to demonstrate the efficacy of the proposed approach.
Resumo:
A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
This paper discusses the requirements on the numerical precision for a practical Multiband Ultra-Wideband (UWB) consumer electronic solution. To this end we first present the possibilities that UWB has to offer to the consumer electronics market and the possible range of devices. We then show the performance of a model of the UWB baseband system implemented using floating point precision. Then, by simulation we find the minimal numerical precision required to maintain floating-point performance for each of the specific data types and signals present in the UWB baseband. Finally, we present a full description of the numerical requirements for both the transmit and receive components of the UWB baseband. The numerical precision results obtained in this paper can then be used by baseband designers to implement cost effective UWB systems using System-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).
Resumo:
A Bayesian method of estimating multivariate sample selection models is introduced and applied to the estimation of a demand system for food in the UK to account for censoring arising from infrequency of purchase. We show how it is possible to impose identifying restrictions on the sample selection equations and that, unlike a maximum likelihood framework, the imposition of adding up at both latent and observed levels is straightforward. Our results emphasise the role played by low incomes and socio-economic circumstances in leading to poor diets and also indicate that the presence of children in a household has a negative impact on dietary quality.
Resumo:
The Group on Earth Observations System of Systems, GEOSS, is a co-ordinated initiative by many nations to address the needs for earth-system information expressed by the 2002 World Summit on Sustainable Development. We discuss the role of earth-system modelling and data assimilation in transforming earth-system observations into the predictive and status-assessment products required by GEOSS, across many areas of socio-economic interest. First we review recent gains in the predictive skill of operational global earth-system models, on time-scales of days to several seasons. We then discuss recent work to develop from the global predictions a diverse set of end-user applications which can meet GEOSS requirements for information of socio-economic benefit; examples include forecasts of coastal storm surges, floods in large river basins, seasonal crop yield forecasts and seasonal lead-time alerts for malaria epidemics. We note ongoing efforts to extend operational earth-system modelling and assimilation capabilities to atmospheric composition, in support of improved services for air-quality forecasts and for treaty assessment. We next sketch likely GEOSS observational requirements in the coming decades. In concluding, we reflect on the cost of earth observations relative to the modest cost of transforming the observations into information of socio-economic value.
Resumo:
This paper introduces PSOPT, an open source optimal control solver written in C++. PSOPT uses pseudospectral and local discretizations, sparse nonlinear programming, automatic differentiation, and it incorporates automatic scaling and mesh refinement facilities. The software is able to solve complex optimal control problems including multiple phases, delayed differential equations, nonlinear path constraints, interior point constraints, integral constraints, and free initial and/or final times. The software does not require any non-free platform to run, not even the operating system, as it is able to run under Linux. Additionally, the software generates plots as well as LATEX code so that its results can easily be included in publications. An illustrative example is provided.
Resumo:
The recursive least-squares algorithm with a forgetting factor has been extensively applied and studied for the on-line parameter estimation of linear dynamic systems. This paper explores the use of genetic algorithms to improve the performance of the recursive least-squares algorithm in the parameter estimation of time-varying systems. Simulation results show that the hybrid recursive algorithm (GARLS), combining recursive least-squares with genetic algorithms, can achieve better results than the standard recursive least-squares algorithm using only a forgetting factor.
Resumo:
A novel partitioned least squares (PLS) algorithm is presented, in which estimates from several simple system models are combined by means of a Bayesian methodology of pooling partial knowledge. The method has the added advantage that, when the simple models are of a similar structure, it lends itself directly to parallel processing procedures, thereby speeding up the entire parameter estimation process by several factors.
Resumo:
Studies have shown that natural ultraviolet (UV) radiation increases secondary products such as phenolics but can significantly inhibit biomass accumulation in lettuce plants. In the work presented here, the effect of UV radiation on phenolic concentration and biomass accumulation was assessed in relation to photosynthetic performance in red and green lettuce types. Lettuce plants in polythene clad tunnels were exposed to either ambient (UV transparent film) or UV-free conditions (UV blocking film). The study tested whether growth reduction in lettuce plants exposed to natural UV radiation is because of inhibition of photosynthesis by direct damage to the photosynthetic apparatus or by internal shading by anthocyanins. Ambient levels of UV radiation did not limit the efficiency of photosynthesis suggesting that phenolic compounds may effectively protect the photosynthetic apparatus. Growth inhibition does, however, occur in red lettuce and could be explained by the high metabolic cost of phenolic compounds for UV protection. From a commercial perspective, UV transparent and UV blocking films offer opportunities because, in combination, they could increase plant quality as well as productivity. Growing plants continuously under a UV blocking film, and then 6 days before the final harvest transferring them to a UV transparent film, showed that high yields and high phytochemical content can be achieved complementarily.
Resumo:
In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.
Resumo:
This letter proposes the subspace-based blind adaptive channel estimation algorithm for dual-rate quasi-synchronous DS/CDMA systems, which can operate at the low-rate (LR) or high-rate (HR) mode. Simulation results show that the proposed blind adaptive algorithm at the LR mode has a better performance than that at the HR mode, with the cost of an increasing computational complexity.
Resumo:
This paper proposes a subspace based blind adaptive channel estimation algorithm for dual-rate DS-CDMA systems, which can operate at the low-rate (LR) or high-rate (HR) mode. Simulation results show that the proposed blind adaptive algorithm at the LR mode has a better performance than that at the HR mode, with the cost of an increased computational complexity.