69 resultados para Correlation extremal principle
Resumo:
A bit-level processing (BLP) based linear CDMA detector is derived following the principle of minimum variance distortionless response (MVDR). The combining taps for the MVDR detector are determined from (1) the covariance matrix of the matched filter output, and (2) the corresponding row (or column) of the user correlation matrix. Due to the interference suppression capability of MVDR and the fact that no inversion of the user correlation matrix is involved, the influence of the synchronisation errors is greatly reduced. The detector performance is demonstrated via computer simulations (both synchronisation errors and intercell interference are considered).
Resumo:
The reactions of propene with [Zr(cyclopentadienyl)(2)Me](+) have been investigated using density functional theory in order to study the correlation between regioselectivity and site charge in propene polymerisation. The reaction paths of the 1,2 and 2,1 additions of the methyl group to propene have been established. The geometries and energies of the reactants, transition states and products have been obtained using both PBEPBE/LANL2DZ and B3LYP/LANL2DZ methodologies. The results with both density functionals show that the activation energy for 1,2-insertion is lower than that for 2,1-insertion (Fig. 5) and this is consistent with the experiment results. Also for both density functionals, the difference of the thermal dynamic driving forces between the 2,1 product named 2-21 and the 1,2 product named 2-12 is significantly lower than the difference between the energy barriers. It is noted that in the reactants, the Mulliken partial charge on the central carbon atom C2 is positive and it can be concluded that 1,2-insertion is favoured because it can proceed via a cationic reaction.
Resumo:
The antioxidant capacity of oak wood used in the ageing of wine was studied by four different methods: measurement of scavenging capacity against a given radical (ABTS, DPPH), oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP). Although, the four methods tested gave comparable results for the antioxidant capacity measured in oak wood extracts, the ORAC method gave results with some differences from the other methods. Non-toasted oak wood samples displayed more antioxidant power than toasted ones due to differences in the polyphenol compositon. A correlation analysis revealed that ellagitannins were the compounds mainly responsible for the antioxidant capacity of oak wood. Some phenolic acids, mainly gallic acid, also showed a significant correlation with antioxidant capacity.
Resumo:
The meltabilities of 14 process cheese samples were determined at 2 and 4 weeks after manufacture using sensory analysis, a computer vision method, and the Olson and Price test. Sensory analysis meltability correlated with both computer vision meltability (R-2 = 0.71, P < 0.001) and Olson and Price meltability (R-2 = 0.69, P < 0.001). There was a marked lack of correlation between the computer vision method and the Olson and Price test. This study showed that the Olson and Price test gave greater repeatability than the computer vision method. Results showed process cheese meltability decreased with increasing inorganic salt content and with lower moisture/fat ratios. There was very little evidence in this study to show that process cheese meltability changed between 2 and 4 weeks after manufacture..
Resumo:
This paper investigates how the correlations implied by a first-order simultaneous autoregressive (SAR(1)) process are affected by the weights matrix and the autocorrelation parameter. A graph theoretic representation of the covariances in terms of walks connecting the spatial units helps to clarify a number of correlation properties of the processes. In particular, we study some implications of row-standardizing the weights matrix, the dependence of the correlations on graph distance, and the behavior of the correlations at the extremes of the parameter space. Throughout the analysis differences between directed and undirected networks are emphasized. The graph theoretic representation also clarifies why it is difficult to relate properties ofW to correlation properties of SAR(1) models defined on irregular lattices.
Resumo:
Novel imaging techniques are playing an increasingly important role in drug development, providing insight into the mechanism of action of new chemical entities. The data sets obtained by these methods can be large with complex inter-relationships, but the most appropriate statistical analysis for handling this data is often uncertain - precisely because of the exploratory nature of the way the data are collected. We present an example from a clinical trial using magnetic resonance imaging to assess changes in atherosclerotic plaques following treatment with a tool compound with established clinical benefit. We compared two specific approaches to handle the correlations due to physical location and repeated measurements: two-level and four-level multilevel models. The two methods identified similar structural variables, but higher level multilevel models had the advantage of explaining a greater proportion of variation, and the modeling assumptions appeared to be better satisfied.
Resumo:
The success of any diversification strategy depends upon the quality of the estimated correlation between assets. It is well known, however, that there is a tendency for the average correlation among assets to increase when the market falls and vice-versa. Thus, assuming that the correlation between assets is a constant over time seems unrealistic. Nonetheless, these changes in the correlation structure as a consequence of changes in the market’s return suggests that correlation shifts can be modelled as a function of the market return. This is the idea behind the model of Spurgin et al (2000), which models the beta or systematic risk, of the asset as a function of the returns in the market. This is an approach that offers particular attractions to fund managers as it suggest ways by which they can adjust their portfolios to benefit from changes in overall market conditions. In this paper the Spurgin et al (2000) model is applied to 31 real estate market segments in the UK using monthly data over the period 1987:1 to 2000:12. The results show that a number of market segments display significant negative correlation shifts, while others show significantly positive correlation shifts. Using this information fund managers can make strategic and tactical portfolio allocation decisions based on expectations of market volatility alone and so help them achieve greater portfolio performance overall and especially during different phases of the real estate cycle.
Resumo:
Practical applications of portfolio optimisation tend to proceed on a “top down” basis where funds are allocated first at asset class level (between, say, bonds, cash, equities and real estate) and then, progressively, at sub-class level (within property to sectors, office, retail, industrial for example). While there are organisational benefits from such an approach, it can potentially lead to sub-optimal allocations when compared to a “global” or “side-by-side” optimisation. This will occur where there are correlations between sub-classes across the asset divide that are masked in aggregation – between, for instance, City offices and the performance of financial services stocks. This paper explores such sub-class linkages using UK monthly stock and property data. Exploratory analysis using clustering procedures and factor analysis suggests that property performance and equity performance are distinctive: there is little persuasive evidence of contemporaneous or lagged sub-class linkages. Formal tests of the equivalence of optimised portfolios using top-down and global approaches failed to demonstrate significant differences, whether or not allocations were constrained. While the results may be a function of measurement of market returns, it is those returns that are used to assess fund performance. Accordingly, the treatment of real estate as a distinct asset class with diversification potential seems justified.
Resumo:
Atmospheric aerosol acts to both reduce the background concentration of natural cluster ions, and to attenuate optical propagation. Hence, the presence of aerosol has two consequences, the reduction of the air’s electrical conductivity and the visual range. Ion-aerosol theory and Koschmieder’s visibility theory are combined here to derive the related non-linear variation of the atmospheric electric potential gradient with visual range. A substantial sensitivity is found under poor visual range conditions, but, for good visual range conditions the sensitivity diminishes and little influence of local aerosol on the fair weather potential gradient occurs. This allows visual range measurements, made simply and routinely at many meteorological sites, to provide inference about the local air’s electrical properties.