44 resultados para Concentration-response
Resumo:
Abstract Objective: Studies have started to question whether a specific component or combinations of metabolic syndrome (MetS) components may be more important in relation to cardiovascular disease risk. Our aim was to examine the impact of the presence of raised fasting glucose as a MetS component on postprandial lipaemia. Methods: Men classified with the MetS underwent a sequential test meal investigation, in which blood samples were taken at regular intervals after a test breakfast (t=0 min) and lunch (t=330 min). Lipids, glucose and insulin were measured in the fasting and postprandial samples. Results: MetS subjects with 3 or 4 components were subdivided into those without (n=34) and with (n=23) fasting hyperglycaemia (≥ 5.6 mmol/l), irrespective of the combination of components. Fasting lipids and insulin were similar in the two groups, with glucose significantly higher in the men with glucose as a MetS component (P<0.001). Following the test meals, there was a higher maximum concentration (maxC), area under the curve (AUC) and incremental AUC (P≤0.016) for the postprandial triacylglycerol (TAG) response in men with fasting hyperglycaemia. Greater glucose AUC (P<0.001) and insulin maxC (P=0.010) was also observed in these individuals after the test meals. Multivariate regression analysis revealed fasting glucose to be an important predictor of the postprandial TAG and glucose response. Conclusion: Our data analysis has revealed a greater impairment of postprandial TAG than glucose response in MetS subjects with raised fasting glucose. The worsening of postprandial lipaemic control may contribute to the greater CVD risk reported in individuals with MetS component combinations which include hyperglycaemia.
Resumo:
The paper provides a descriptive analysis of the carbon management activities of the cement industry in Europe based on a study involving the four largest producers of cement in the world. Based on this analysis, the paper explores the relationship between managerial perception and strategy with particular focus on the impact of government regulation and competitive dynamics. The research is based on extensive documentary analysis and in-depth interviews with senior managers from the four companies who have been responsible for and/or involved in the development of climate change strategies. We find that whilst the cement industry has embraced climate change and the need for action, their remains much scope for action in their carbon management activities with current effort concentration on hedging practices and win-win efficiency programs. Managers perceive that inadequate and unfavourable regulatory structure is the key barrier against more action to achieve emission reduction within the industry. EU Cement companies are also shifting their CO2 emissions to less developed countries of the South.
Resumo:
Chemotaxis is one of the best characterised signalling systems in biology. It is the mechanism by which bacteria move towards optimal environments and is implicated in biofilm formation, pathogenesis and symbiosis. The properties of the bacterial chemosensory response have been described in detail for the single chemosensory pathway of Escherichia coli. We have characterised the properties of the chemosensory response of Rhodobacter sphaeroides, an -proteobacterium with multiple chemotaxis pathways, under two growth conditions allowing the effects of protein expression levels and cell architecture to be investigated. Using tethered cell assays we measured the responses of the system to step changes in concentration of the attractant propionate and show that, independently of the growth conditions, R. sphaeroides is chemotactic over at least five orders of magnitude and has a sensing profile following Weber’s law. Mathematical modelling also shows that, like E. coli, R. sphaeroides is capable of showing Fold-Change Detection (FCD). Our results indicate that general features of bacterial chemotaxis such as the range and sensitivity of detection, adaptation times, adherence to Weber’s law and the presence of FCD may be integral features of chemotaxis systems in general, regardless of network complexity, protein expression levels and cellular architecture across different species.
Resumo:
Atmospheric turbulence causes most weather-related aircraft incidents1. Commercial aircraft encounter moderate-or-greater turbulence tens of thousands of times each year worldwide, injuring probably hundreds of passengers (occasionally fatally), costing airlines tens of millions of dollars and causing structural damage to planes1, 2, 3. Clear-air turbulence is especially difficult to avoid, because it cannot be seen by pilots or detected by satellites or on-board radar4, 5. Clear-air turbulence is linked to atmospheric jet streams6, 7, which are projected to be strengthened by anthropogenic climate change8. However, the response of clear-air turbulence to projected climate change has not previously been studied. Here we show using climate model simulations that clear-air turbulence changes significantly within the transatlantic flight corridor when the concentration of carbon dioxide in the atmosphere is doubled. At cruise altitudes within 50–75° N and 10–60° W in winter, most clear-air turbulence measures show a 10–40% increase in the median strength of turbulence and a 40–170% increase in the frequency of occurrence of moderate-or-greater turbulence. Our results suggest that climate change will lead to bumpier transatlantic flights by the middle of this century. Journey times may lengthen and fuel consumption and emissions may increase. Aviation is partly responsible for changing the climate9, but our findings show for the first time how climate change could affect aviation.
Resumo:
We describe a mathematical model linking changes in cerebral blood flow, blood volume and the blood oxygenation state in response to stimulation. The model has three compartments to take into account the fact that the cerebral blood flow and volume as measured concurrently using laser Doppler flowmetry and optical imaging spectroscopy have contributions from the arterial, capillary as well as the venous compartments of the vasculature. It is an extension to previous one-compartment hemodynamic models which assume that the measured blood volume changes are from the venous compartment only. An important assumption of the model is that the tissue oxygen concentration is a time varying state variable of the system and is driven by the changes in metabolic demand resulting from changes in neural activity. The model takes into account the pre-capillary oxygen diffusion by flexibly allowing the saturation of the arterial compartment to be less than unity. Simulations are used to explore the sensitivity of the model and to optimise the parameters for experimental data. We conclude that the three-compartment model was better than the one-compartment model at capturing the hemodynamics of the response to changes in neural activation following stimulation.
Resumo:
A recent nonlinear system by Friston et al. (2000. NeuroImage 12: 466–477) links the changes in BOLD response to changes in neural activity. The system consists of five subsystems, linking: (1) neural activity to flow changes; (2) flow changes to oxygen delivery to tissue; (3) flow changes to changes in blood volume and venous outflow; (4) changes in flow, volume, and oxygen extraction fraction to deoxyhemoglobin changes; and finally (5) volume and deoxyhemoglobin changes to the BOLD response. Friston et al. exploit, in subsystem 2, a model by Buxton and Frank coupling flow changes to changes in oxygen metabolism which assumes tissue oxygen concentration to be close to zero. We describe below a model of the coupling between flow and oxygen delivery which takes into account the modulatory effect of changes in tissue oxygen concentration. The major development has been to extend the original Buxton and Frank model for oxygen transport to a full dynamic capillary model making the model applicable to both transient and steady state conditions. Furthermore our modification enables us to determine the time series of CMRO2 changes under different conditions, including CO2 challenges. We compare the differences in the performance of the “Friston system” using the original model of Buxton and Frank and that of our model. We also compare the data predicted by our model (with appropriate parameters) to data from a series of OIS studies. The qualitative differences in the behaviour of the models are exposed by different experimental simulations and by comparison with the results of OIS data from brief and extended stimulation protocols and from experiments using hypercapnia.
Resumo:
We investigate the initialization of Northern-hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates significantly reduces assimilation error both in identical-twin experiments and when assimilating sea-ice observations, reducing the concentration error by a factor of four to six, and the thickness error by a factor of two. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that the strong dependence of thermodynamic ice growth on ice concentration necessitates an adjustment of mean ice thickness in the analysis update. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that proportional mean-thickness updates are superior to the other two methods considered and enable us to assimilate sea ice in a global climate model using simple Newtonian relaxation.
Resumo:
We investigate the initialisation of Northern Hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates leads to good assimilation performance for sea-ice concentration and thickness, both in identical-twin experiments and when assimilating sea-ice observations. The simulation of other Arctic surface fields in the coupled model is, however, not significantly improved by the assimilation. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that an adjustment of mean ice thickness in the analysis update is essential to arrive at plausible state estimates. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that assimilation with proportional mean-thickness updates outperforms the other two methods considered. The method described here is very simple to implement, and gives results that are sufficiently good to be used for initialising sea ice in a global climate model for seasonal to decadal predictions.
Resumo:
To examine the long-term stability of Arctic and Antarctic sea ice, idealized simulations are carried out with the climate model ECHAM5/MPIOM. Atmospheric CO2 concentration is increased over 2000 years from pre-industrial levels to quadrupling, is then kept constant for 5940 years, is afterwards decreased over 2000 years to pre-industrial levels, and finally kept constant for 3940 years.Despite these very slow changes, the sea-ice response significantly lags behind the CO2 concentration change. This lag, which is caused by the ocean’s thermal inertia, implies that the sea-ice equilibrium response to increasing CO2 concentration is substantially underestimated by transient simulations. The sea-ice response to CO2 concentration change is not truly hysteretic and in principle reversible.We find no lag in the evolution of Arctic sea ice relative to changes in annual-mean northern-hemisphere surface temperature. The summer sea-ice cover changes linearly with respect to both CO2 concentration and temper...
Resumo:
BACKGROUND:Apolioprotein E (APOE) genotype is reported to influence a person's fasting lipid profile and potentially the response to dietary fat manipulation. The impact of APOE genotype on the responsiveness to meals of varying fat composition is unknown. OBJECTIVE:We examined the effect of meals containing 50 g of fat rich in saturated fatty acids (SFAs), unsaturated fatty acids (UNSATs), or SFAs with fish oil (SFA-FO) on postprandial lipemia. METHOD:A randomized, controlled, test meal study was performed in men recruited according to the APOE genotype (n = 10 APOE3/3, n = 11 APOE3/E4). RESULTS:For the serum apoE response (meal × genotype interaction P = 0.038), concentrations were on average 8% lower after the UNSAT than the SFA-FO meal in APOE4 carriers (P = 0.015) only. In the genotype groups combined, there was a delay in the time to reach maximum triacylglycerol (TG) concentration (mean ± SEM: 313 ± 25 vs. 266 ± 27 min) and higher maximum nonesterified fatty acid (0.73 ± 0.05 vs. 0.60 ± 0.03 mmol/L) and glucose (7.92 ± 0.22 vs. 7.25 ± 0.22 mmol/L) concentrations after the SFA than the UNSAT meal, respectively (P ≤ 0.05). In the Svedberg flotation rate 60-400 TG-rich lipoprotein fraction, meal × genotype interactions were observed for incremental area under the curve (IAUC) for the TG (P = 0.038) and apoE (P = 0.016) responses with a 58% lower apoE IAUC after the UNSAT than the SFA meal (P = 0.017) in the E4 carriers. CONCLUSIONS:Our data indicate that APOE genotype had a modest impact on the postprandial response to meals of varying fat composition in normolipidemic men. The physiologic importance of greater apoE concentrations after the SFA-rich meals in APOE4 carriers may reflect an impact on TG-rich lipoprotein clearance from the circulation. This trial was registered at clinicaltrials.gov as NCT01522482.
Resumo:
A fast simple climate modelling approach is developed for predicting and helping to understand general circulation model (GCM) simulations. We show that the simple model reproduces the GCM results accurately, for global mean surface air temperature change and global-mean heat uptake projections from 9 GCMs in the fifth coupled model inter-comparison project (CMIP5). This implies that understanding gained from idealised CO2 step experiments is applicable to policy-relevant scenario projections. Our approach is conceptually simple. It works by using the climate response to a CO2 step change taken directly from a GCM experiment. With radiative forcing from non-CO2 constituents obtained by adapting the Forster and Taylor method, we use our method to estimate results for CMIP5 representative concentration pathway (RCP) experiments for cases not run by the GCMs. We estimate differences between pairs of RCPs rather than RCP anomalies relative to the pre-industrial state. This gives better results because it makes greater use of available GCM projections. The GCMs exhibit differences in radiative forcing, which we incorporate in the simple model. We analyse the thus-completed ensemble of RCP projections. The ensemble mean changes between 1986–2005 and 2080–2099 for global temperature (heat uptake) are, for RCP8.5: 3.8 K (2.3 × 1024 J); for RCP6.0: 2.3 K (1.6 × 1024 J); for RCP4.5: 2.0 K (1.6 × 1024 J); for RCP2.6: 1.1 K (1.3 × 1024 J). The relative spread (standard deviation/ensemble mean) for these scenarios is around 0.2 and 0.15 for temperature and heat uptake respectively. We quantify the relative effect of mitigation action, through reduced emissions, via the time-dependent ratios (change in RCPx)/(change in RCP8.5), using changes with respect to pre-industrial conditions. We find that the effects of mitigation on global-mean temperature change and heat uptake are very similar across these different GCMs.
Resumo:
There are large uncertainties in the circulation response of the atmosphere to climate change. One manifestation of this is the substantial spread in projections for the extratropical storm tracks made by different state-of-the-art climate models. In this study we perform a series of sensitivity experiments, with the atmosphere component of a single climate model, in order to identify the causes of the differences between storm track responses in different models. In particular, the Northern Hemisphere wintertime storm tracks in the CMIP3 multi-model ensemble are considered. A number of potential physical drivers of storm track change are identified and their influence on the storm tracks is assessed. The experimental design aims to perturb the different physical drivers independently, by magnitudes representative of the range of values present in the CMIP3 model runs, and this is achieved via perturbations to the sea surface temperature and the sea-ice concentration forcing fields. We ask the question: can the spread of projections for the extratropical storm tracks present in the CMIP3 models be accounted for in a simple way by any of the identified drivers? The results suggest that, whilst the changes in the upper-tropospheric equator-to-pole temperature difference have an influence on the storm track response to climate change, the large spread of projections for the extratropical storm track present in the northern North Atlantic in particular is more strongly associated with changes in the lower-tropospheric equator-to-pole temperature difference.
Resumo:
In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO2 increasing at 1% yr−1) during the second doubling of CO2 is 40% larger than the transient climate response (TCR), i.e. the increase in T during the first doubling. We identify four possible contributory effects. First, the surface climate system loses heat less readily into the ocean beneath as the latter warms. The model spread in the thermal coupling between the upper and deep ocean largely explains the model spread in ocean heat uptake efficiency. Second, CO2 radiative forcing may rise more rapidly than logarithmically with CO2 concentration. Third, the climate feedback parameter may decline as the CO2 concentration rises. With CMIP5 data, we cannot distinguish the second and third possibilities. Fourth, the climate feedback parameter declines as time passes or T rises; in 1pctCO2, this effect is less important than the others. We find that T projected for the end of the twenty-first century correlates more highly with T at the time of quadrupled CO2 in 1pctCO2 than with the TCR, and we suggest that the TCR may be underestimated from observed climate change.
Resumo:
Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.