53 resultados para Computer aided design tool
Resumo:
This article describes an application of computers to a consumer-based production engineering environment. Particular consideration is given to the utilisation of low-cost computer systems for the visual inspection of components on a production line in real time. The process of installation is discussed, from identifying the need for artificial vision and justifying the cost, through to choosing a particular system and designing the physical and program structure.
Resumo:
This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.
Resumo:
The top managers of a biotechnology startup firm agreed to participate in a system dynamics modeling project to help them think about the firm's growth strategy. The article describes how the model was created and used to stimulate debate and discussion about growth management. The paper highlights several novel features about the process used for capturing management team knowledge. A heavy emphasis was placed on mapping the operating structure of the factory and distribution channels. Qualitative modeling methods (structural diagrams, descriptive variable names, and friendly algebra) were used to capture the management team's descriptions of the business. Simulation scenarios were crafted to stimulate debate about strategic issues such as capacity allocation, capacity expansion, customer recruitment, customer retention, and market growth, and to engage the management team in using the computer to design strategic scenarios. The article concludes with comments on the impact of the project.
Resumo:
This paper discusses and compares the use of vision based and non-vision based technologies in developing intelligent environments. By reviewing the related projects that use vision based techniques in intelligent environment design, the achieved functions, technical issues and drawbacks of those projects are discussed and summarized, and the potential solutions for future improvement are proposed, which leads to the prospective direction of my PhD research.
Resumo:
In order to gain a better understanding of online conceptual collaborative design processes this paper investigates how student designers make use of a shared virtual synchronous environment when engaged in conceptual design. The software enables users to talk to each other and share sketches when they are remotely located. The paper describes a novel methodology for observing and analysing collaborative design processes by adapting the concepts of grounded theory. Rather than concentrating on narrow aspects of the final artefacts, emerging “themes” are generated that provide a broader picture of collaborative design process and context descriptions. Findings on the themes of “grounding – mutual understanding” and “support creativity” complement findings from other research, while important themes associated with “near-synchrony” have not been emphasised in other research. From the study, a series of design recommendations are made for the development of tools to support online computer-supported collaborative work in design using a shared virtual environment.
Resumo:
This paper presents recent research into the functions and value of sketch outputs during computer supported collaborative design. Sketches made primarily exploiting whiteboard technology are shown to support subjects engaged in remote collaborative design, particularly when constructed in ‘nearsynchronous’ communication. The authors define near-synchronous communication and speculate that it is compatible with the reflective and iterative nature of design activity. There appears to be significant similarities between the making of sketches in near-synchronous remote collaborative design and those made on paper in more traditional face-to-face settings With the current increase in the use of computer supported collaborative working (CSCW) in undergraduate and postgraduate design education it is proposed that sketches and sketching can make important contributions to design learning in this context
Resumo:
This paper presents the findings from a study into the current exploitation of computer-supported collaborative working (CSCW) in design for the built environment in the UK. The research is based on responses to a web-based questionnaire. Members of various professions, including civil engineers, architects, building services engineers, and quantity surveyors, were invited to complete the questionnaire. The responses reveal important trends in the breadth and size of project teams at the same time as new pressures are emerging regarding team integration and efficiency. The findings suggest that while CSCW systems may improve project management (e.g., via project documentation) and the exchange of information between team members, it has yet to significantly support those activities that characterize integrated collaborative working between disparate specialists. The authors conclude by combining the findings with a wider discussion of the application of CSCW to design activity-appealing for CSCW to go beyond multidisciplinary working to achieve interdisciplinary working.
Resumo:
This paper describes a novel methodology for observing and analysing collaborative design by using the concepts of cognitive dimensions related to concept-based misfit analysis. The study aims at gaining an insight into support for creative practice of graphical communication in collaborative design processes of designers while sketching within a shared white board and audio conferencing environment. Empirical data on design processes have been obtained from observation of groups of student designers solving an interior space-planning problem of a lounge-diner in a shared virtual environment. The results of the study provide recommendations for the design and development of interactive systems to support such collaborative design activities.
Resumo:
Virtual learning environments (VLEs) would appear to be particular effective in computer-supported collaborative work (CSCW) for active learning. Most research studies looking at computer-supported collaborative design have focused on either synchronous or asynchronous modes of communication, but near-synchronous working has received relatively little attention. Yet it could be argued that near-synchronous communication encourages creative, rhetorical and critical exchanges of ideas, building on each other’s contributions. Furthermore, although many researchers have carried out studies on collaborative design protocol, argumentation and constructive interaction, little is known about the interaction between drawing and dialogue in near-synchronous collaborative design. The paper reports the first stage of an investigation into the requirements for the design and development of interactive systems to support the learning of collaborative design activities. The aim of the study is to understand the collaborative design processes while sketching in a shared white board and audio conferencing media. Empirical data on design processes have been obtained from observation of seven sessions with groups of design students solving an interior space-planning problem of a lounge-diner in a virtual learning environment, Lyceum, an in-house software developed by the Open University to support its students in collaborative learning.
Resumo:
Resistant strains of Plasmodium falciparum and the unavailability of useful antimalarial vaccines reinforce the need to develop new efficacious antimalarials. This study details a pharmacophore model that has been used to identify a potent, soluble, orally bioavailable antimalarial bisquinoline, metaquine (N,N'-bis(7-chloroquinolin-4-yl)benzene-1,3-diamine) (dihydrochloride), which is active against Plasmodium berghei in vivo (oral ID50 of 25 mu mol/kg) and multidrug-resistant Plasmodium falciparum K1 in vitro (0.17 mu M). Metaquine shows strong affinity for the putative antimalarial receptor, heme at pH 7.4 in aqueous DMSO. Both crystallographic analyses and quantum mechanical calculations (HF/6-31+G*) reveal important regions of protonation and bonding thought to persist at parasitic vacuolar pH concordant with our receptor model. Formation of drug-heme adduct in solution was confirmed using high-resolution positive ion electrospray mass spectrometry. Metaquine showed strong binding with the receptor in a 1: 1 ratio (log K = 5.7 +/- 0.1) that was predicted by molecular mechanics calculations. This study illustrates a rational multidisciplinary approach for the development of new 4-aminoquinoline antimalarials, with efficacy superior to chloroquine, based on the use of a pharmacophore model.
Resumo:
Information technology in construction (ITC) has been gaining wide acceptance and is being implemented in the construction research domains as a tool to assist decision makers. Most of the research into visualization technologies (VT) has been on the wide range of 3D and simulation applications suitable for construction processes. Despite its development with interoperability and standardization of products, VT usage has remained very low when it comes to communicating and addressing the needs of building end-users (BEU). This paper argues that building end users are a source of experience and expertise that can be brought into the briefing stage for the evaluation of design proposals. It also suggests that the end user is a source of new ideas promoting innovation. In this research a positivistic methodology that includes the comparison of 3D models and the traditional 2D methods is proposed. It will help to identify "how much", if anything, a non-spatial specialist can gain in terms Of "understanding" of a particular design proposal presented, using both methods.
Resumo:
This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.