62 resultados para Compositional dependence
Resumo:
An approach to incorporate spatial dependence into stochastic frontier analysis is developed and applied to a sample of 215 dairy farms in England and Wales. A number of alternative specifications for the spatial weight matrix are used to analyse the effect of these on the estimation of spatial dependence. Estimation is conducted using a Bayesian approach and results indicate that spatial dependence is present when explaining technical inefficiency.
Resumo:
The aim of the work was to study the survival of Lactobacillus plantarum NCIMB 8826 in model solutions and develop a mathematical model describing its dependence on pH, citric acid and ascorbic acid. A Central Composite Design (CCD) was developed studying each of the three factors at five levels within the following ranges, i.e., pH (3.0-4.2), citric acid (6-40 g/L), and ascorbic acid (100-1000 mg/L). In total, 17 experimental runs were carried out. The initial cell concentration in the model solutions was approximately 1 × 10(8)CFU/mL; the solutions were stored at 4°C for 6 weeks. Analysis of variance (ANOVA) of the stepwise regression demonstrated that a second order polynomial model fits well the data. The results demonstrated that high pH and citric acid concentration enhanced cell survival; one the other hand, ascorbic acid did not have an effect. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate, cranberry and lemon juice. The model predicted well the cell survival in orange, blackcurrant and pineapple, however it failed to predict cell survival in grapefruit and pomegranate, indicating the influence of additional factors, besides pH and citric acid, on cell survival. Very good cell survival (less than 0.4 log decrease) was observed after 6 weeks of storage in orange, blackcurrant and pineapple juice, all of which had a pH of about 3.8. Cell survival in cranberry and pomegranate decreased very quickly, whereas in the case of lemon juice, the cell concentration decreased approximately 1.1 logs after 6 weeks of storage, albeit the fact that lemon juice had the lowest pH (pH~2.5) among all the juices tested. Taking into account the results from the compositional analysis of the juices and the model, it was deduced that in certain juices, other compounds seemed to protect the cells during storage; these were likely to be proteins and dietary fibre In contrast, in certain juices, such as pomegranate, cell survival was much lower than expected; this could be due to the presence of antimicrobial compounds, such as phenolic compounds.
Resumo:
This article explores the nature and impact of path dependence in British rail coal haulage before 1939. It examines the factors which locked Britain's railways into a system of small coal wagons with highly fragmented ownership, the cost penalties of this system, and the reasons that attempts at modernization were unsuccessful. The analysis highlights the importance of decentralized ownership of a highly durable installed base of complementary infrastructure. Technical and institutional interrelatedness blocked incremental modernization, while the political requirement to compensate private wagon owners for the loss of their wagon stock made wholesale rationalization financially unattractive.
Resumo:
Aircraft flying through cold ice-supersaturated air produce persistent contrails which contribute to the climate impact of aviation. Here, we demonstrate the importance of the weather situation, together with the route and altitude of the aircraft through this, on estimating contrail coverage. The results have implications for determining the climate impact of contrails as well as potential mitigation strategies. Twenty-one years of re-analysis data are used to produce a climatological assessment of conditions favorable for persistent contrail formation between 200 and 300 hPa over the north Atlantic in winter. The seasonal-mean frequency of cold ice-supersaturated regions is highest near 300 hPa, and decreases with altitude. The frequency of occurrence of ice-supersaturated regions varies with large-scale weather pattern; the most common locations are over Greenland, on the southern side of the jet stream and around the northern edge of high pressure ridges. Assuming aircraft take a great circle route, as opposed to a more realistic time-optimal route, is likely to lead to an error in the estimated contrail coverage, which can exceed 50% for westbound north Atlantic flights. The probability of contrail formation can increase or decrease with height, depending on the weather pattern, indicating that the generic suggestion that flying higher leads to fewer contrails is not robust.
Resumo:
An assessment of the fifth Coupled Models Intercomparison Project (CMIP5) models’ simulation of the near-surface westerly wind jet position and strength over the Atlantic, Indian and Pacific sectors of the Southern Ocean is presented. Compared with reanalysis climatologies there is an equatorward bias of 3.7° (inter-model standard deviation of ± 2.2°) in the ensemble mean position of the zonal mean jet. The ensemble mean strength is biased slightly too weak, with the largest biases over the Pacific sector (-1.6±1.1 m/s, 27 -22%). An analysis of atmosphere-only (AMIP) experiments indicates that 41% of the zonal mean position bias comes from coupling of the ocean/ice models to the atmosphere. The response to future emissions scenarios (RCP4.5 and RCP8.5) is characterized by two phases: (i) the period of most rapid ozone recovery (2000-2049) during which there is insignificant change in summer; and (ii) the period 2050-2098 during which RCP4.5 simulations show no significant change but RCP8.5 simulations show poleward shifts (0.30, 0.19 and 0.28°/decade over the Atlantic, Indian and Pacific sectors respectively), and increases in strength (0.06, 0.08 and 0.15 m/s/decade respectively). The models with larger equatorward position biases generally show larger poleward shifts (i.e. state dependence). This inter-model relationship is strongest over the Pacific sector (r=-0.89) and insignificant over the Atlantic sector (r=-0.50). However, an assessment of jet structure shows that over the Atlantic sector jet shift is significantly correlated with jet width whereas over the Pacific sector the distance between the sub-polar and sub-tropical westerly jets appears to be more important.
Resumo:
Archive-based study of the dependence of NATO member states on the USA as nuclear guarantor, and the problems this entailed.
Resumo:
The relationship between winter (DJF) rainfall over Portugal and the variable large scale circulation is addressed. It is shown that the poles of the sea level pressure (SLP) field variability associated with rainfall variability are shifted about 15° northward with respect to those used in standard definitions of the North Atlantic Oscillation (NAO). It is suggested that the influence of NAO on rainfall dominantly arises from the associated advection of humidity from the Atlantic Ocean. Rainfall is also related to different aspects of baroclinic wave activity, the variability of the latter quantity in turn being largely dependent on the NAO.
A negative NAO index (leading to increased westerly surface geostrophic winds into Portugal) is associated with an increased number of deep (ps<980 hPa) surface lows over the central North Atlantic and of intermediate (980
Resumo:
An eddy-resolving numerical model of a zonal flow, meant to resemble the Antarctic Circumpolar Current, is described and analyzed using the framework of J. Marshall and T. Radko. In addition to wind and buoyancy forcing at the surface, the model contains a sponge layer at the northern boundary that permits a residual meridional overturning circulation (MOC) to exist at depth. The strength of the residual MOC is diagnosed for different strengths of surface wind stress. It is found that the eddy circulation largely compensates for the changes in Ekman circulation. The extent of the compensation and thus the sensitivity of the MOC to the winds depend on the surface boundary condition. A fixed-heat-flux surface boundary severely limits the ability of the MOC to change. An interactive heat flux leads to greater sensitivity. To explain the MOC sensitivity to the wind strength under the interactive heat flux, transformed Eulerian-mean theory is applied, in which the eddy diffusivity plays a central role in determining the eddy response. A scaling theory for the eddy diffusivity, based on the mechanical energy balance, is developed and tested; the average magnitude of the diffusivity is found to be proportional to the square root of the wind stress. The MOC sensitivity to the winds based on this scaling is compared with the true sensitivity diagnosed from the experiments.
Resumo:
Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.
Resumo:
Recent research into sea ice friction has focussed on ways to provide a model which maintains much of the clarity and simplicity of Amonton's law, yet also accounts for memory effects. One promising avenue of research has been to adapt the rate- and state- dependent models which are prevalent in rock friction. In such models it is assumed that there is some fixed critical slip displacement, which is effectively a measure of the displacement over which memory effects might be considered important. Here we show experimentally that a fixed critical slip displacement is not a valid assumption in ice friction, whereas a constant critical slip time appears to hold across a range of parameters and scales. As a simple rule of thumb, memory effects persist to a significant level for 10 s. We then discuss the implications of this finding for modelling sea ice friction and for our understanding of friction in general.
Resumo:
The political economy literature on agriculture emphasizes influence over political outcomes via lobbying conduits in general, political action committee contributions in particular and the pervasive view that political preferences with respect to agricultural issues are inherently geographic. In this context, ‘interdependence’ in Congressional vote behaviour manifests itself in two dimensions. One dimension is the intensity by which neighboring vote propensities influence one another and the second is the geographic extent of voter influence. We estimate these facets of dependence using data on a Congressional vote on the 2001 Farm Bill using routine Markov chain Monte Carlo procedures and Bayesian model averaging, in particular. In so doing, we develop a novel procedure to examine both the reliability and the consequences of different model representations for measuring both the ‘scale’ and the ‘scope’ of spatial (geographic) co-relations in voting behaviour.
Resumo:
In this note, the authors discuss the contribution that frictional sliding of ice floes (or floe aggregates) past each other and pressure ridging make to the plastic yield curve of sea ice. Using results from a previous study that explicitly modeled the amount of sliding and ridging that occurs for a given global strain rate, it is noted that the relative contribution of sliding and ridging to ice stress depends upon ice thickness. The implication is that the shape and size of the plastic yield curve is dependent upon ice thickness. The yield-curve shape dependence is in addition to plastic hardening/weakening that relates the size of the yield curve to ice thickness. In most sea ice dynamics models the yield-curve shape is taken to be independent of ice thickness. The authors show that the change of the yield curve due to a change in the ice thickness can be taken into account by a weighted sum of two thickness-independent rheologies describing ridging and sliding effects separately. It would be straightforward to implement the thickness-dependent yield-curve shape described here into sea ice models used for global or regional ice prediction.
Resumo:
Seasonal-to-interannual predictions of Arctic sea ice may be important for Arctic communities and industries alike. Previous studies have suggested that Arctic sea ice is potentially predictable but that the skill of predictions of the September extent minimum, initialized in early summer, may be low. The authors demonstrate that a melt season “predictability barrier” and two predictability reemergence mechanisms, suggested by a previous study, are robust features of five global climate models. Analysis of idealized predictions with one of these models [Hadley Centre Global Environment Model, version 1.2 (HadGEM1.2)], initialized in January, May and July, demonstrates that this predictability barrier exists in initialized forecasts as well. As a result, the skill of sea ice extent and volume forecasts are strongly start date dependent and those that are initialized in May lose skill much faster than those initialized in January or July. Thus, in an operational setting, initializing predictions of extent and volume in July has strong advantages for the prediction of the September minimum when compared to predictions initialized in May. Furthermore, a regional analysis of sea ice predictability indicates that extent is predictable for longer in the seasonal ice zones of the North Atlantic and North Pacific than in the regions dominated by perennial ice in the central Arctic and marginal seas. In a number of the Eurasian shelf seas, which are important for Arctic shipping, only the forecasts initialized in July have continuous skill during the first summer. In contrast, predictability of ice volume persists for over 2 yr in the central Arctic but less in other regions.