35 resultados para Complex Networks
Resumo:
Activating transcription factor 3 (Atf3) is rapidly and transiently upregulated in numerous systems, and is associated with various disease states. Atf3 is required for negative feedback regulation of other genes, but is itself subject to negative feedback regulation possibly by autorepression. In cardiomyocytes, Atf3 and Egr1 mRNAs are upregulated via ERK1/2 signalling and Atf3 suppresses Egr1 expression. We previously developed a mathematical model for the Atf3-Egr1 system. Here, we adjusted and extended the model to explore mechanisms of Atf3 feedback regulation. Introduction of an autorepressive loop for Atf3 tuned down its expression and inhibition of Egr1 was lost, demonstrating that negative feedback regulation of Atf3 by Atf3 itself is implausible in this context. Experimentally, signals downstream from ERK1/2 suppress Atf3 expression. Mathematical modelling indicated that this cannot occur by phosphorylation of pre-existing inhibitory transcriptional regulators because the time delay is too short. De novo synthesis of an inhibitory transcription factor (ITF) with a high affinity for the Atf3 promoter could suppress Atf3 expression, but (as with the Atf3 autorepression loop) inhibition of Egr1 was lost. Developing the model to include newly-synthesised miRNAs very efficiently terminated Atf3 protein expression and, with a 4-fold increase in the rate of degradation of mRNA from the mRNA/miRNA complex, profiles for Atf3 mRNA, Atf3 protein and Egr1 mRNA approximated to the experimental data. Combining the ITF model with that of the miRNA did not improve the profiles suggesting that miRNAs are likely to play a dominant role in switching off Atf3 expression post-induction.
Resumo:
This paper seeks to examine the particular operations of gender and cultural politics that both shaped and restrained possible 'networked' interactions between Jamaican women and their British 'motherlands' during the first forty years of the twentieth century. Paying particular attention to the poetry of Albinia Catherine MacKay (a Scots Creole) and the political journalism of Una Marson (a black Jamaica), I shall seek to examine why both writers speak in and of voices out of place. MacKay's poems work against the critical pull of transnational modernism to reveal aesthetic and cultural isolation through a model of strained belonging in relation to both her Jamaica home and an ancestral Scotland. A small number of poems from her 1912 collection that are dedicated to the historical struggle between the English and Scots for the rule of Scotland and cultural self-determination, some of which are written in a Scottish idiom, may help us to read the complex cultural negotiations that silently inform the seemingly in commensurability of location and locution revealed in these works. In contrast, Marson's journalism, although less known even than her creative writings, is both politically and intellectually radical in its arguments concerning the mutual articulation of race and gender empowerment. However, Marson remains aware of her inability to articulate these convictions with force in a British context and thereby of the way in which speaking out of place also silences her.
Resumo:
Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks – homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs.
Resumo:
Results from two studies on longitudinal friendship networks are presented, exploring the impact of a gratitude intervention on positive and negative affect dynamics in a social network. The gratitude intervention had been previously shown to increase positive affect and decrease negative affect in an individual but dynamic group effects have not been considered. In the first study the intervention was administered to the whole network. In the second study two social networks are considered and in each only a subset of individuals, initially low/high in negative affect respectively received the intervention as `agents of change'. Data was analyzed using stochastic actor based modelling techniques to identify resulting network changes, impact on positive and negative affect and potential contagion of mood within the group. The first study found a group level increase in positive and a decrease in negative affect. Homophily was detected with regard to positive and negative affect but no evidence of contagion was found. The network itself became more volatile along with a fall in rate of change of negative affect. Centrality measures indicated that the best broadcasters were the individuals with the least negative affect levels at the beginning of the study. In the second study, the positive and negative affect levels for the whole group depended on the initial levels of negative affect of the intervention recipients. There was evidence of positive affect contagion in the group where intervention recipients had low initial level of negative affect and contagion in negative affect for the group where recipients had initially high level of negative affect.
Resumo:
Smart grid research has tended to be compartmentalised, with notable contributions from economics, electrical engineering and science and technology studies. However, there is an acknowledged and growing need for an integrated systems approach to the evaluation of smart grid initiatives. The capacity to simulate and explore smart grid possibilities on various scales is key to such an integrated approach but existing models – even if multidisciplinary – tend to have a limited focus. This paper describes an innovative and flexible framework that has been developed to facilitate the simulation of various smart grid scenarios and the interconnected social, technical and economic networks from a complex systems perspective. The architecture is described and related to realised examples of its use, both to model the electricity system as it is today and to model futures that have been envisioned in the literature. Potential future applications of the framework are explored, along with its utility as an analytic and decision support tool for smart grid stakeholders.